• Title/Summary/Keyword: evaporation effect

Search Result 778, Processing Time 0.029 seconds

The improvement of electrical properties of InGaZnO (IGZO)4(IGZO) TFT by treating post-annealing process in different temperatures.

  • Kim, Soon-Jae;Lee, Hoo-Jeong;Yoo, Hee-Jun;Park, Gum-Hee;Kim, Tae-Wook;Roh, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.169-169
    • /
    • 2010
  • As display industry requires various applications for future display technology, which can guarantees high level of flexibility and transparency on display panel, oxide semiconductor materials are regarded as one of the best candidates. $InGaZnO_4$(IGZO) has gathered much attention as a post-transition metal oxide used in active layer in thin-film transistor. Due to its high mobility fabricated at low temperature fabrication process, which is proper for application to display backplanes and use in flexible and/or transparent electronics. Electrical performance of amorphous oxide semiconductors depends on the resistance of the interface between source/drain metal contact and active layer. It is also affected by sheet resistance on IGZO thin film. Controlling contact/sheet resistance has been a hot issue for improving electrical properties of AOS(Amorphous oxide semiconductor). To overcome this problem, post-annealing has been introduced. In other words, through post-annealing process, saturation mobility, on/off ratio, drain current of the device all increase. In this research, we studied on the relation between device's resistance and post-annealing temperature. So far as many post-annealing effects have been reported, this research especially analyzed the change of electrical properties by increasing post-annealing temperature. We fabricated 6 main samples. After a-IGZO deposition, Samples were post-annealed in 5 different temperatures; as-deposited, $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$ and $500^{\circ}C$. Metal deposition was done on these samples by using Mo through E-beam evaporation. For analysis, three analysis methods were used; IV-characteristics by probe station, surface roughness by AFM, metal oxidation by FE-SEM. Experimental results say that contact resistance increased because of the metal oxidation on metal contact and rough surface of a-IGZO layer. we can suggest some of the possible solutions to overcome resistance effect for the improvement of TFT electrical performances.

  • PDF

Analysis of Dry Process Products for Recycling of Spent Secondary Batteries (폐 이차전지 리사이클링을 위한 건식공정 생성물 분석)

  • Kim, Jinhan;Kim, Yongcheol;Oh, Seung Kyo;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • The purpose of this study is to recover valuable metals from spent batteries using a dry process. We focused on the effect of the smelting temperature on the composition of recovered solid and liquid products and collected gaseous products. After removal of the cover, the spent battery was left in NaCl solution and discharged. Then, the spent battery was made into a powder form through a crushing process. The smelting of the spent battery was performed in a tubular electric furnace in an oxygen atmosphere. For spent lithium-ion batteries, the recovery yield of the solid product was 80.1 wt% at a reaction temperature of 850 ℃, and the final product had 27.2 wt% of cobalt as well as other metals such as lithium, copper, and aluminum. Spent nickel-hydrogen batteries had a recovery yield of 99.2 wt% at a reaction temperature of 850 ℃ with about 37.6 wt% of nickel and other metals including iron. For spent nickel-cadmium batteries, the yield decreased to 65.4 wt% because of evaporation with increasing temperature. At 1050 ℃, the recovered metals were nickel (41 wt%) and cadmium (12.9 wt%). Benzene and toluene, which were not detected with the other secondary waste batteries, were detected in the gaseous product. The results of this study can be used as basic data for future research on the dry recycling process of spent secondary batteries.

Experimental Study for Evaluating Early Age Shrinkage of Mortar for 3D Printing (3D 프린팅용 모르타르의 초기재령 수축거동 평가를 위한 실험적 연구)

  • Seo, Eun-A;Yang, Keun-Hyeok;Lee, Ho-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.76-83
    • /
    • 2022
  • Since the 3D printing mortar is exposed to the atmosphere immediately after printing, moisture is largely evaporated from the surface of the layer. The evaporation of moisture on the surface of the layer greatly causes drying shrinkage and increases the risk of cracking and damage to the structure due to drying shrinkage. This study experimentally evaluated the shrinkage behavior of the initial age using the mortar used for 3D printing. The change in shrinkage was evaluated by comparing the shrinkage of the specimen cured by the sealing method and the atmospheric exposure method. In addition, compared with the case where type 1 cement was used 100%, the shrinkage amount was evaluated when 20% of fly ash was replaced and 10% of silica fume was used. In particular, the effect of three chemical admixtures applied using 3D printing on shrinkage was evaluated experimentally. When fly ash and silica fume were used, the shrinkage amount increased by 60 - 110% compared to the case when type 1 cement was used. The application of viscosity modifiers and shrinkage reducers reduced the shrinkage by at least 18% and at most 70% depending on the curing conditions. The temperature of the specimen temporarily decreased to 15 ℃ at the beginning of curing, and the correlation between the internal temperature of the specimen and the shrinkage behavior was observed.

Assessing the resilience of urban water management to climate change

  • James A. Griffiths
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.32-32
    • /
    • 2023
  • Incidences of urban flood and extreme heat waves (due to the urban heat island effect) are expected to increase in New Zealand under future climate change (IPCC 2022; MfE 2020). Increasingly, the mitigation of such events will depend on the resilience of a range Nature-Based Solutions (NBS) used in Sustainable Urban Drainage Schemes (SUDS), or Water Sensitive Urban Design (WSUD) (Jamei and Tapper 2019; Johnson et al 2021). Understanding the impact of changing precipitation and temperature regimes due climate change is therefore critical to the long-term resilience of such urban infrastructure and design. Cuthbert et al (2022) have assessed the trade-offs between the water retention and cooling benefits of different urban greening methods (such as WSUD) relative to global location and climate. Using the Budyko water-energy balance framework (Budyko 1974), they demonstrated that the potential for water infiltration and storage (thus flood mitigation) was greater where potential evaporation is high relative to precipitation. Similarly, they found that the potential for mitigation of drought conditions was greater in cooler environments. Subsequently, Jaramillo et al. (2022) have illustrated the locations worldwide that will deviate from their current Budyko curve characteristic under climate change scenarios, as the relationship between actual evapotranspiration (AET) and potential evapotranspiration (PET) changes relative to precipitation. Using the above approach we assess the impact of future climate change on the urban water-energy balance in three contrasting New Zealand cities (Auckland, Wellington, Christchurch and Invercargill). The variation in Budyko curve characteristics is then used to describe expected changes in water storage and cooling potential in each urban area as a result of climate change. The implications of the results are then considered with respect to existing WSUD guidelines according to both the current and future climate in each location. It was concluded that calculation of Budyko curve deviation due to climate change could be calculated for any location and land-use type combination in New Zealand and could therefore be used to advance the general understanding of climate change impacts. Moreover, the approach could be used to better define the concept of urban infrastructure resilience and contribute to a better understanding of Budyko curve dynamics under climate change (questions raised by Berghuijs et al 2020)). Whilst this knowledge will assist in implementation of national climate change adaptation (MfE, 2022; UNEP, 2022) and improve climate resilience in urban areas in New Zealand, the approach could be repeated for any global location for which present and future mean precipitation and temperature conditions are known.

  • PDF

Analysis of Cooling Effect on the Plastic Film Cover of Greenhouse Module Depending on the Shade and Water Curtain (온실지붕 차광과 수막 수준에 따른 냉방효과 분석)

  • Kim, Young-Bok;Park, Joong-Chun;Lee, Seung-Kyu;Kim, Sung-Tae;La, Woo-Jung;Huh, Moo-Ryong;Jeong, Sung-Woo
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.306-316
    • /
    • 2006
  • In this study, the effect of the shade level, water flow rate applied to the shades and the temperature of water on the greenhouse cooling was investigated depending on the shade level of 0, 35, 55, 75%, and water flow rate and water temperature by the test on the small wooden frames to find out the low cost cooling method. With increasing of the dry bulb temperature of outside air, the dry bulb temperature in the wooden frames increased. For the frames with the shade and water, inside temperatures of the frames were lower of -0.2$\sim$-1.2$^{\circ}C$ than the temperature of the outside air and higher than the water temperature. For the frames without water, inside temperatures of the frames were higher of 1.7$\sim$4$^{\circ}C$ than the outside and not affected by the shade level very much. The water flow rate and the temperature of the water were not the important factors to decrease the inside temperatures in the frames. The black globe temperature became lower with increasing of shade level. The shade frames with water curtain showed the best cooling effect because of reducing thermal radiation and cooling the plastic film cover. The surface temperatures of the plastic film cover for the water supplied modules became lower with increasing of the shade level. The relative humidity was decreased with the dry bulb temperature in the frame increasing and not affected by the dry bulb temperature of the outside air for the frames with the shade and water.

A Study on the Effect of Cold Application Using a Sponge Bath in Healthy Adults (냉요법 적용방법에 따른 냉요법 효과에 관한 연구-건강한 성인 여성에서 스폰지 목욕방법을 중심으로)

  • Chung, Hyun-Sook;Kang, Kyu-Sook;Hwang, Ae-Ran
    • The Korean Nurse
    • /
    • v.28 no.3
    • /
    • pp.68-82
    • /
    • 1989
  • This study was a quasi-experimental research study to test the characteristics of temperature regulation according to sponge bath methods of cold application. Thirteen volunteers were selected from among nursing college students according to an established criteria using a purposive sampling technique. Four different cold application methods were used: $\circled1$ tepid water sponge bath at $28^{\circ}C$, $\circled2$ 20% alcohol sponge bath at $28^{\circ}C$, $\circled3$ 40% alcohol sponge bath at $28^{\circ}C$ and $\circled4$ tepid water sponge bath at 28$^{\circ}$C plus an ice bag to the head. Changes in rectal temperature, mean skin temperature, mean body temperature, heat content change and thermal discomfort during the cold application were measured at 5 minute intervals over a 120 minute period. The data collection period was from Dec. 20, 1988 to Feb. 3, 1989. The data were analyzed using descriptive statistics, simple regression, ANOVA, Duncan's multiple range test and Pearson correlation coefficient using the SPSS-X Program. The results of the study are summarized as follows. Five general hypothesis were tested. Hypothesis 1 that "Change in heat content will be decreased for each cold application method according to the cold application time" was rejected. (tepid water sponge bath: after 10 minutes of cold application, 20% alcohol sponge bath: after 25 minutes of cold application: 40% alcohol sponge bath: after 45 minutes of cold application, tepid water sponge bath plus an ice bag to the head: after 80 minutes of cold application) Hypothesis 2 that "Thermal discomfort will be changed for each cold application method according to the cold application time" was rejected after 5minutes of cold application. Hypothesis 3 that "Change in heat content will differ among the cold application methods" was accepted except 0~5, 0~10, 0~65, 0~105 and 0~120 minute. This difference showed significance only between sponge bath methods and tepid water sponge bath plus an ice bag to the head. Hypothesis 4 that "Thermal discomfort will differ among the cold application methods" was accepted at 15, 20, 35, 45, 75, 80, 90, 95, 100, 105, 110, 115 and 120 minute of cold application time. This difference showed significance only between sponge bath methods and tepid water sponge bath plus an ice bag to the head. Hypothesis 5 that "The higher the change in heat content, the higher the thermal discomfort during the cold application time" was accepted for between 10~60 and 75 minute of cold application. In conclusion, this study showed that in sponge bath at $28^{\circ}C$, 10~80 minute was a effective cold application time in the view of heat loss through the skin. Concerning the effects of evaporation and thermal discomfort, it was found that there was no difference with regard to the solutions; tepid water sponge bath; 20% alcohol sponge bath or 40% alcohol sponge bath at a $28^{\circ}C$ controlled solution temperature. So it was thought that the type of solution itself did not have a big influence on the heat loss through skin. The combined effect of sponge bath with an ice bag to the head showed a significant difference and also showed a slight increase in thermal discomfort. On the basis of this research it can be concluded that cold application, for example, an ice bag to the head during a tepid water sponge bath is a good method as it increase heat loss through conduction, although fit can also cause a slight increase in thermal discomfort. The correlation between changes in heat content and thermal discomfort were not high. So factors other than change in heat content are considered to have an effect on the cognition of thermal discomfort.

  • PDF

Studies on Wet Paddy Field Underdrainage Improvement in the Gum-Ho Area (I) (금호지구 저습답의 암거배수효과에 관한 연구(I))

  • 김조웅;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.82-95
    • /
    • 1980
  • This paper complies the results of the studies so far made on the subsoil improvement of subsurface drainage systems for wet paddy fields (those were located in the Gum-Ho area in Kyung Buk province) which had poor permeability and a high water table. In general, a drainage problem is an excess of water on the ground surface which can effect the productivity and bearing capacity of the soil. With drain pipe systems, (According to their depths and spacing) it may be possible to correct that problem. The experimentation consisted of three test plots, two of which included drain pipe systems with varing depths and width spacing of the pipes. The third plot (C) was an ordinary plot being exempt of a drain pipe system. In detail, the depth of plot A was 80 cm, and the width spacings began at 2. Om and increased by 2. Om up to 10. 0m. The depth of plot B was 60cm and the width spacing was the same as plot A. These tests were performed to research specific details; such as crop yeild, bearing capacity of the soil, the amount of underdrainage, surface cracks, root distribution, the water table level, the consumptive water depth and the soil moisture content. The test period lasted three years, from 1977 thru 1979. The results obtained were as follows: 1. During the test period, the weather conditions for the area tested were in accordance with the annual average for that area. Furthermore the precipitation factor during the spring cultivation season, the intermediate drainage period and the harvest drainage period was of optimum conditions for controling surface cracks, because of less precipitation than evaporation. 2. The difference in the level of the ground water table in plots A and B was hardly noticable, but the difference in the test plots and the ord. plot was greatly noticable. The test plots (A, B) were 30 to 40cm lower than the ordinary plot. On the whole, the ground water table of the ord. plot always stayed at a level of 15-20cm beneath the surface of the soil, the ground water table of the test plot A showed The difference in the depth of the pipe lower than the test plot B, while the test plots showed a remarkable descending effect. 3. The soil temperature in plot A was slightly core than in plot B with a difference of 0. 47$^{\circ}$C, but plot A was 1. 6$^{\circ}$C higher than the ord. plot during the flooding period, but after drainage the temperature difference climed to 2. 0$^{\circ}$C. 4. During the 3rd test year, the values of the cracks were recorded with the values of 59cm in plot A, 42cm in plot B and 15cm in the ordinary plot. Plots A and B had increased 2.5 times the value of the first year while the ordinary plot had remained the same. 5. The root weight of the rice was measured at a value of 77.2 gr. for plot A, 73.5 gr. for plot B and 65.3 gr. for the ord. plot. Therefore, the root growths in plots A and B were much more energetic than in the ord. plot. 6. The consumptive water depth measured during the 3rd year resulted in the values of 26. 0mm per day for plot A, and 24.9 mm per day for plot B, respectively. Therefore, both plot A and plot B maintained the optimum consumptive water depths, but the ordinary plot only obtained the value of 12.3 mm per day, which clearly showed less than the optimum consumptive water depth which is 20 to 30 mm/day. 7. The soil moisture content is in direct relationship to the ground water level. During drainage, test plot A decreased in its ground water level much more rapidly than the other two plots. Therefore, plot A had a much less soil moisture content. But this decreased water level could be directly effected by the weather conditions. 8. The relationship between the bearing capacity and the soil moisture content were directly inversely proportional. It can be assumed that the occurence of soil creaks is limited by the soil moisture content. Therefore, the greater the progress of the surface creaks resulted in a greater bearing capacity. So, tast plot A with a greater amount of surface cracks than the other test plots resulted in a greater bearing capacity. But, the bearing capacity at the harvest season could be effected by the drainage during the intermediate drainage period and by the weather conditions. 9. Comparing the production of the test plots to the ord. plot; there was an increased value of 840kg for plot A, 755kg for plot B and 695kg for the ord. plot in the rough rice. Therefore, plot A had an increase of 20% over the ordinary plot. The possibility of producing double crops was investigated. The effects on barley production in the test plots showed a value of 367kg per 10 acres, which substantiated the possibility of double crops because that value showed an increased value over the average yearly yield for those uplands. 10. So as a result, it can be recommended that by including a drain pipe system with the optimum conditions of an (80cm centimeter) depth and a (l0m) spacing will have a definite positive effect on the over all production capacity and quality of wetpaddy fields.

  • PDF

Effect of 2-D DBP/PLGA Hybrid Films on Attachment and Proliferation of Intervertebral Disc Cells (2차원적 DBP/PLGA 하이브리드 필름이 디스크 세포의 부착과 증식에 미치는 영향)

  • Ko, Youn-Kyung;Jeong, Jae-Soo;Kim, Soon-Hee;Lim, Ji-Ye;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • Because demineralized bone particle (DBP) contains various bioactive molecules such as cytokines, it is widely used biomaterials in the field of tissue engineering. In this study, we investigated the effect of 2-dimensional DBP/PLGA hybrid films on adhesion, proliferation and phenotype maintenance of intervertebral disc cells. PLGA films incorporated with different amount (0, 10, 20, 40 and 80 wt%) of DBP were prepared by the solvent evaporation method and characterized by scanning election microscopy (SEM). PLGA film has a flat and smooth surface. According to the increase of content of DBP, the surface of DBP/PLGA film exhibited few agglomerates and increased the roughness of the surface. Annulus fibrosus (AF) and nucleus pulposus (NP) cells were cultured on PLGA and DBP/PLGA film surface, and then examined the cell adhesion and proliferation by the cell count and SEM observation. The result of cell count and SEM observation revealed that 10 and 20% DBP in DBP/PLGA films were superior to adhesion and proliferation of both AF and NP cells. We confirmed that specific gene expression of disc cells on DBP/PLGA film based on the cell count result. Disc cells seeded on 20% DBP/PLGA film expressed the gene of type I and II collagen continuously. Therefore, pertinent content of biomaterials could provide more appropriate condition on adhesion and proliferation of cell. And this results may be used as a basic data for the intervertebral disc regeneration using tissue engineering.

Study on Selective Lithium Leaching Effect on Roasting Conditions of the Waste Electric Vehicle Cell Powder (폐전기차 셀분말의 열처리 조건에 따른 선택적 리튬침출 연구)

  • Jung, Yeon Jae;Son, Seong Ho;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2019
  • Recently, the use of lithium ion battery(LIB) has increased. As a result, the price of lithium and the amount spent lithium on ion battery has increased. For this reason, research on recycling lithium in waste LIBs has been conducted1). In this study, the effect of roasting for the selective lithium leaching from the spent LIBs is studied. Chemical transformation is required for selective lithium leaching in NCM LiNixCoyMnzO2) of the spent LIBs. The carbon in the waste EV cell powder reacts with the oxygen of the oxide at high temperature. After roasting at 550 ~ 850 ℃ in the Air/N2 atmosphere, the chemical transformation is analysed by XRD. The heat treated powders are leached at a ratio of 1:10 in D.I water for ICP analysis. As a result of XRD analysis, Li2CO3 peak is observed at 700 ℃. After the heat treatment at 850 ℃, a peak of Li2O was confirmed because Li2CO3 is decomposed into Li2O and CO2 over 723 ℃. The produced Li2O reacted with Al at high temperature to form LiAlO2, which does not leach in D.I water, leading to a decrease in lithium leaching ratio. As a result of lithium leaching in water after heat treatment, lithium leaching ratio was the highest after heat treatment at 700 ℃. After the solid-liquid separation, over 45 % of lithium leaching was confirmed by ICP analysis. After evaporation of the leached solution, peak of Li2CO3 was detected by XRD.

Ecosysteme de I′Etang de Berre (Mediterranee nord-occidentale) : Caracteres Generales Physiques, Chimiques et Biologiques

  • Kim, Ki-Tai
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.2
    • /
    • pp.247-258
    • /
    • 2004
  • Climatological, hydrological and planktonical research studies, measurements of primary production and photosynthetic efficiency from December 1976 to December 1978 have been carried out in two brackish lakes: Lake Etang de Berre and Lake Etang de Vaine located in the French Mediterranean coast, in the region of Carry-le-Rouet located on the north-west Mediterranean near Marseilles, and in fresh water inflows from 4 Rivers (Touloubre, Durance, Arc, Durancole) to Lake Etang de Berre. Physico-chemical parameters were measured for this study: water temperature, salinity, density, pH, alcalinity, dissolved oxygen (% saturation), phosphate, nitrate, nitrite, silicate etc. Diverse biological parameters were also studied: photosynthetic pigments, phaeopigments, specific composition and biomass of phytoplankton, primary pelagic production etc. Climatical factors were studied: air-temperature, solar-radiation, evaporation, direction (including strength) of winds, precipitation and freshwater volume of the four rivers. The changes in Lake ‘Etang de Berre’ ecosystem depend on the quality of the water in the Durance River, and on the effects of seawater near the entrance of the Caronte Canal. The water quality of the lake varies horizontally and vertically as a result of atmospheric phenomena, maritime currents and tides. The distribution of water temperatures is generally heterogeneous. Southeasterly winds and the Northeasterly Mistral wind are important in the origins of circulated and mixed water masses. These winds are both frequent and strong. They have, as a result, a great effect on the water environment of Lake Etang de Berre. In theory, the annual precipitation in this region is well over eight times the water mass of the lake. The water of the Durance River flows into Lake Etang de Berre through the EDF Canal, amounting to 90% of the precipitation. However, reduction of rainfall in dry seasons has a serious effect on the hydrological characteristics of the lake. The temperature in the winter is partially caused by the low temperature of fresh water, particularly that of the Durance River. The hydrological season of fresh and brackish water is about one month ahead of the hydrological season of sea water in its vicinity. The salinity of Lake Etang de Berre runs approximately 3$\textperthousand$, except at lower levels and near the entrance to the Caronte Canal. However, when the volume of the Durance River water is reduced in the summer and fall, the salinity rises to 15$\textperthousand$. In the lake, the ratio of fresh water to sea water is six to one (6:1). The large quantities of seston conveyed by rivers, particularly the Durance diversion, strongly reduce the transparency in the brackish waters. Although the amount of sunshine is also notable, transparency is slight because of the large amount of seston, carried chiefly by Tripton in the fresh water of the Durance River. Therefore, photosynthesis generally occurs only in the surface layer. The transparency progressively increases from freshwater to open seawater, as mineral particles sink to the bottom (about 1.7kg $m^{-2}a^{-1}$ on the average in brackish lakes). The concentration of dissolved oxygen and the rate of oxygen saturation in seawater (Carry-le-Rouet) ranged from 5.0 to 6.0 $m\ell$ㆍ.$1^{-1}$, and from 95 to 105%, respectively. The amount of dissolved oxygen in Etang de Berre oscillated between 2.9 and 268.3%. The monographs of phosphate, nitrate, nitrite and silicate were published as a part of a study on the ecology of phytoplankton in these environments. Horizontal and vertical distributions of these nutriments were studied in detail. The recent diversion of the Durance River into Lake Etang de Berre has effected a fundamental change in this formerly marine environment, which has had a great impact in its plankton populations. A total of 182 taxa were identified, including 111 Bacillariophyceae, 44 Chlorophyceae, and 15 Cyanophyceae. The most abundant species are small freshwater algae, mainly Chlorophyceae. The average density is about $10^{8}$ cells $1^{-1}$ in Lake Etang de Berre, and about double that amount in Lake Etang de Vaine. Differences in phytoplankton abundance and composition at the various stations or at various depths are slight. Cell biovolume V (equivalent to true biomass), plasma volume VP (‘useful’ biomass) and, simultaneously. the cell surface area S and S/V ratio through the measurement of cell dimensions were computed as the parameters of phytoplankton productivity and metabolism. Pigment concentrations are generally very high on account of phytoplankton blooms by Cyanophyceae, Chlorophyceae and Cryptophyceae. On the other hand, in freshwaters and marine waters, pigment concentrations are comparatively low and stable, showing slight annual variation. The variations of ATP concentration were closely related to those of chlorophyll a and phytoplankton blooms only in marine waters. The carbon uptake rates ranged between 38 and 1091 mg$Cm^{-2}d^{-1}$, with an average surface value of 256 mg; water-column carbon-uptake rates ranged between 240 and 2310 mg$Cm^{-2}d^{-1}$, with an average of 810, representing 290 mg$Cm^{-2}$, per year 45 000 tons per year of photosynthetized carbon for the whole lake. Gross photosynthetic production measured by the method of Ryther was studied over a 2-year period. The values obtained from marine water(Carry-le-Rouet) ranged from 23 to 2 337 mg$Cm^{-2}d^{-1}$, with a weighted average of 319, representing about 110 gCm$^{-2}$ per year. The values in brakish water (Etang de Berre) ranged from 14 to 1778 mg$Cm^{-2}d^{-1}$, with a weighted average of 682, representing 250 mg$Cm^{-2}$ per year and 38 400 tons per year of photosynthesized carbon for the whole lake.