• Title/Summary/Keyword: evaporating system

Search Result 233, Processing Time 0.028 seconds

Analysis on the Structure of Evaporative Diesel Spray by Using PIV Technique (화상상관법을 이용한 증발 디젤분무의 구조해석)

  • Yeom, Jeong-Kuk;Chung, Sung-Sik;Ha, Jong-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.74-79
    • /
    • 2004
  • The effects of change in injection pressure on spray structure have been investigated in high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Also emissions of diesel engines can be controlled by the analyzed results. Therefore, this study examines the evaporating spray structure by using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 72 MPa to 112 MPa with a high pressure injection system(ECD-U2). The PIV(Particle Image Velocimetry) technique was used to capture flow variation of the evaporative diesel spray. A study on the mixture formation process of diesel spray was executed by the results of flow analysis in this study. Consequentially the large-scale vortex flow could be found in downstream spray and the formed vortex governs the mixture formation process in diesel spray.

A Numerical Study on the Performance of a Vapor Compression Cycle Equipped with an Ejector Using Refrigerants R1234yf and R134a (R1234yf와 R134a 냉매의 이젝터를 적용한 냉동사이클 성능에 대한 해석적 연구)

  • Cho, Honghyun;Park, Chasik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.362-368
    • /
    • 2015
  • This paper presents a numerical study on the performance of a vapor compression cycle equipped with an ejector as an expansion device to improve the COP by reducing the expansion loss and compressor work. The simulation is carried out using a model based on the conservation of mass, energy and momentum in the ejector. From the results of the simulation, the vapor compression cycle equipped with an ejector showed a maximum COP improvement of 14.0% when using R134a refrigerant and 16.8% when using R1234yf. In addition, the performance of the system with an ejector represents the increased performance as the temperature difference between condensing and evaporating increased.

Growth and Characteristics for $ZnGa_2Se_4$ thin film

  • Hong, Kwang-Joon;Lee, Sang-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.136-137
    • /
    • 2006
  • The stochiometric mix of evaporating materials for the $ZnGa_2Se_4$ single crystal thin films were prepared from horizental furnace. To obtains the single crystal thin films, $ZnGa_2Se_4$ mixed crystal were deposited on throughly etched Si(100) by the Hot Wall Epitaxy (HWE) system. The temperates of the source and the substrate were $590^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature.

  • PDF

Heat Load Characteristics of Sea Water Cooling Apparatus on Inshore Fishing Boat (연근해 어선용 해수냉각장치의 열부하특성)

  • 한인근;문춘근;김재돌;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1317-1323
    • /
    • 2001
  • The circumstance is giving the blow against fishermen with the incoming-decreasing and the difficulty of crew's supply & demand and management. In addition, the depression of the external situation like the departure of WTO system and the plan of EEZ proclaim is forcing fishery into improving their fishing condition. By this international and domestic circumstance, development of the sea water cooling apparatus for fish hold storage is demanded sincerely. First of all, we Investigated load characteristics which based on development of sea water cooling system and optimum fish hold storage. The experimental results is as follows. In creasing the speed of compressor and mass blew rate of refrigerant, the temperature of NaCl solution is low. And the load characteristics experiment on fish hold storage outlet is as fellows. As time goes by, increasing the mass flow rate of NaCl solution, temperature difference between inlet and outlet is small in a model of fish hold storage. These results provide many useful informations applicable to an actual design of sea water cooling system and optimum fish hold storage.

  • PDF

A study on the development of MVR desalination plant and its performance analysis (MVR해수담수화플랜트의 개발 및 성능에 관한 연구)

  • Kim, Yeongmin;Chun, Wongee;Kim, Dongkook
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • MVR evaporation is a method of pressurizing the evaporating steam to raise its temperature with an electric compressor instead of burning fuel and reusing the heat source through the embraced heat exchanger to minimize energy use. MVR desalination system with wind power uses varying wind power instead of stable electricity and can flexibly control the volume of fresh water production. The present study introduces the design, construction and operation of a MVR desalination system of 30ton/day capacity. Experimental results, MVR compression ratio is higher than 1.5, temperature difference of the main heat exchanger is $5{\sim}7^{\circ}C$. This value shows the same performance as the designed value.

The Operation Experience of the Concentrated Waste Drying System with Variation in the Mole Ratio of Boron to Sodium (방사성 폐액중의 붕소와 나트륨의 몰비 변화에 따른 농축폐액건조설비 운전 경험사례)

  • 김영식;김세태;안교수;박진석;박종길
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.220-225
    • /
    • 2003
  • Generally, liquid radioactive wastes generated in nuclear power plant exist in powder form which do not contain moisture through the evaporating process of the Liquid Waste Management System and drying process of the Concentrated Waste Drying System. This powder form wastes are blended homogeneously with paraffin solidification agent and packed in metal drum to ensure its stability during handling and disposal. However, it was experienced that the powder form wastes were not blended homogeneously and separated into two layers in metal drum, on the other hand, a Portion of powder was adhered and solidified to the Inside parts of facility during the blending process. And the flaw of blending process above would come in case the mole ratio of Boron to Sodium in liquid radioactive wastes exceeds 0.2.

  • PDF

Characteristics of High Pressure Bio-diesel Fuel Spray (바이오 디젤 연료의 고압 분무 특성)

  • Hong, Chang-Ho;Choi, Wook;Choi, Byung-Chul;Lee, Gi-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.56-62
    • /
    • 2003
  • Spray characteristics of conventional diesel fuel and bio-diesel fuel(methyl-ester of soybean oil) were compared, in terms of spray tip penetration and spray angle, by using a commercial high pressure common rail injection system for light-duty DI Diesel engines. The experiments were carried out under the non-evaporating condition at ambient density(8.8, $15.6 kg/\textrm{m}^3$) and injection pressure(75, 135 MPa). The experimental method was based on a laser sheet scattering technique. Spray tip penetrations of bio-diesel fuel were longer, on the whole, than those of conventional diesel fuel, except for lower injection pressure(75 MPa) under lower ambient density$(8.8 kg/\textrm{m}^3)$. But spray near angle and spray far angle of bio-diesel fuel were smaller than those of conventional diesel fuel, implying spray angle is related to the growth rate of spray tip penetration. The experimental results of spray tip penetration agreed well with the calculated values by the Wakuri et al.'s correlation based on the momentum theory.

Research on the Performance of Regenerator using Hot Water from Solar Water Heater(1st paper : On the Effect of Solution Temperature to Regeneration Rate) (태양열 온수기를 이용한 다목적 공조시스템의 재생효율에 관한 연구(제1보 액체흡수제 온도가 재생량에 미치는 영향))

  • Woo, Jong-Soo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.53-61
    • /
    • 2004
  • Absorption potential of desiccant solution significantly decreases after absorbing moisture from humid air, and a regeneration process requires a great amount of energy to recover absorption potential of desiccant solution. In an effort to develop an efficient solar water heater, this study examines a regeneration process using hot water obtained from solar water heater to recover absorption potential by evaporating moisture in the liquid desiccant. In this paper, a solar absorption dehumidifying system with solar water heater is suggested to save the electricity for operating an air conditioner. LiGl(lithium chloride) solution was adopted as a liquid desiccant in the proposed system, and hot water obtained from the solar water heater was used for regenerating the liquid desiccant. As a result, it was clear that the dilute LiCl solution could be regenerated by hot water, and the regeneration rate depends mostly on temperature level of liquid desiccant. The regeneration rates were about 2.4kg/h with $40^{\circ}C$, 4.0kg/h with $50^{\circ}C$, and 6.2kg/h with $60^{\circ}C$ of hot water respectively.

Investigation on the Reduction Effect on Cooling Power Consumption and Operating Cost of Mist-spray Outdoor Units in Air Conditioner

  • Lee, Keon-ho;Cho, Dong-woo;Kim, Hyemi;Song, Young-hak
    • Architectural research
    • /
    • v.19 no.4
    • /
    • pp.101-108
    • /
    • 2017
  • The use of the air conditioner is increasing due to the rise of the outdoor temperature during summer, and the problems of the fire and the cooling performance deterioration are caused due to lack of maintenance of the outdoor unit. In particular, overall performance of cooling system and efficiency in outdoor units have been degraded due to an intake of high-temperature outdoor air thereby increasing cooling energy and operating cost. Thus, this study aimed to increase efficiency of outdoor units by evaporating and cooling intake air through mist spray at the intake port surface in the outdoor unit. The measurements results showed that total power consumption of misting outdoor unit compared to that of conventional outdoor units was reduced by 21% approximately, and total power consumption of the entire system including pump was reduced by 16.7%. In addition, the operating cost including water use was reduced by 13.5% approximately. In summary, if a mist-spray nozzle kit is installed in air-cooled outdoor units, the reduction in the usage of cooling energy and operating cost will be achieved without replacement of existing cooling systems or a large scale of repairs.

The Combustion Characteristics of Diesel Engine by the Water Injection through the Intake Port (I) (흡기관내로의 물 분사에 의한 디젤기관의 연소특성 (I))

  • Ryu, Kyung-Hyun;Yun, Yoong-Jin;Oh, Young-Taig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1756-1762
    • /
    • 2002
  • To effectively meet current regulations on the exhaust emissions of diesel engine required to control the deterioration of air pollution in the whole world, this study is to investigate the effects of water induction through the air intake system on the characteristics of combustion and exhaust emissions in IDI diesel engine. A method fur supplying water through the air intake system to reduce the exhaust emissions has been considered with other methods such as water introduction in the form of water-in-fuel emulsion or water injection directly into the combustion chamber, but it has not been studied about the effects of water on the combustion concepts and the characteristics of exhaust emissions in detail until now. In this study, the formation of NOx was significantly suppressed by decreasing the gas peak temperature during the initial combustion process because the water play a role as a heat sink during evaporating in the combustion chamber, but the smoke was slightly increased by increasing water amount.