• Title/Summary/Keyword: evaluation frame

Search Result 1,060, Processing Time 0.026 seconds

Evaluation indicators for the restoration of degraded urban ecosystems and the analysis of restoration performance (훼손된 도시생태계 생태복원 평가지표 제시 및 복원성과 분석)

  • Sohn, Hee-Jung;Kim, Do-Hee;Kim, Na-Yeong;Hong, Jin-Pyo;Song, Young-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.97-114
    • /
    • 2019
  • This study aims to analyze the effect of urban ecosystem restoration projects by evaluating the short-term restoration performance of the project sites, from both qualitative and quantitative evaluations. In this study, for the qualitative evaluation, we derived the evaluation frame from previous studies and literature. For the quantitative evaluation, the changes in ecological connectivity after the restoration project were described using landscape permeability and network analysis. In addition, changes in habitat quality after the restoration project were evaluated by using InVEST Habitat Quality Model. These evaluations were applied to the three natural madang (ecological restoration) projects and two ecosystem conservation cooperation projects. As a result, three categories, 10 indicators, and 13 sub-indicators were derived from literature as the evaluation frame for this study. In the case of quantitative evaluation of restoration performance, habitat quality increased by 45% and ecological connectivity by 37% in natural-madang, and habitat quality by about 12% and ecological connectivity by about 19% in ecosystem conservation cooperation projects. This implies that the ecological restoration project can increase the ecological connectivity and the habitat quality of degraded sites even in a short period of time by improving the land-cover and land use. The results by applying the evaluation frame indicated that ecological and environmental factors and the ecological functions were improved by the restoration works, even though the magnitude of performances were diverse depending on the specific evaluation items, project type, and site characteristics. This study clarified that the success of ecological restoration project should be assessed by both of the short-term and long-term goals, which can be achieved by the maintenance and sustainable management, respectively.

Seismic retrofit of framed structures using a steel frame assembly

  • Michael Adane;Seungho Chun;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.857-865
    • /
    • 2023
  • This study aimed to develop a seismic retrofit technique using a steel frame which can be easily transported and assembled on site. This enables the retrofit steel frame to be easily attached to an existing structure minimizing the unwanted gap between the structure and the steel frame assembly. A one-story one-bay RC frame was tested with and without seismic retrofit using the proposed steel frame to verify the seismic retrofit effect of the proposed system, and an analysis model was developed in Opensees for seismic performance evaluation of a case study soft first-story model structure retrofitted with the developed steel frame assembly. Seismic performance of the model structure was also evaluated considering soil structure interaction effect. The experimental study confirmed that the proposed seismic retrofit system can be applied effectively to improve the seismic performance of framed structures. Time history analysis results of the model structure showed that the proposed steel frame assembly was effective in increasing the seismic load resisting capacity of the soft first-story structure. However more steel frame assemblies were required to satisfy the given performance limit state of the model structure located on weak soil due to the negative soil-structure interaction effect.

A Study on Factors and Evaluation for the Ergonomic Design of Military Backpack (전투용 배낭의 인간공학적 설계를 위한 변수 및 평가에 관한 연구)

  • Kim, Dong-Jin;Cha, Kyoung-Hwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • A new design of shoulder straps and frame of backpack is proposed for reducing compression and fatigue of shoulder. The stress reduction effects of a backpack equipped with the newly designed shoulder straps and frame have been analyzed statistically through various experiments. We show that the newly designed shoulder straps(wider than the conventional ones) is superior to existing shoulder straps in respect of RPE, task performance measure and physiological measure. The new frame is also proven to be superior to existing frame in respect of RPE and task performance measure. In conclusion, the proposed shoulder straps and frame are shown to enhance the task performance of soldiers.

Experimental and Analytical Study on Fatigue Strength Evaluation for the Bogie Frame of Tilting Railway Vehicles (틸팅열차용 주행장치 프레임에 대한 피로강도평가를 위한 해석 및 시험적 연구)

  • Kim Jung-Seok;Kim Nam-Po;Ko Tae-Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.97-104
    • /
    • 2006
  • This paper has investigated the strength of the bogie frame for the Korean tilting train that is being developed in KRRI. In this study, the loading conditions imposed on the bogie frame of tilting train were derived and the static and fatigue strength of the bogie frame has been evaluated. In order to achieve these goals, finite element analysis has been performed and the stress concentration areas were investigated. Based on the analytical results, the static load tests were conducted under the nontilting load conditions and the tilting load conditions. The test results were used to evaluate the fatigue strength of the bogie frame by Goodman diagram.

Structure Analysis of Secondary Bogie Frame for Electrical Multiple Unit (전동차 부수대차의 구조해석 연구)

  • Yoon S.C.;Kwon S.T.;Kim W.K.;Chang S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1402-1405
    • /
    • 2005
  • This paper describes the result of structure analysis of secondary bogie frame. The purpose of the analysis is to evaluate an safety which secondary bogie frame shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Secondary bogie system consist of bogie frame, suspensions, wheel-sets, and brake system. Among these component, the bogie frame is most significant component subjected to the vehicle and passenger loads. The evaluation method is used the JIS E 4207 specification throughout the FEM analysis. The analysis results have been very safety and stable for design load conditions.

  • PDF

Durability Evaluation of a Lightweight 40-feet Container Trailer (40피트 경량 컨테이너 트레일러의 내구성 평가)

  • Kim, J.G.;Kim, J.Y.;Yoon, H.J.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.31-36
    • /
    • 2011
  • The need for the lightweight of special vehicle trailer frame is substantially growing due to high gasoline prices and serious environmental issues. In this study, we develop a new lightweight sub-frame for large container trailers and evaluate its durability through a fatigue test. To this end, a reliable three-dimensional parametric finite element model of a sub-frame is constructed and then an optimized lightweight sub-frame is newly developed by using the Taguchi method. Next, we make a trial product of the optimized lightweight sub-frame and conduct a driving test to identify the driving load history at vulnerable areas. Finally, we evaluate the durability of the developed lightweight sub-frame through a fatigue test based on the load history.

An evaluation of structural strength by testing the carbody of stainless steel material (스테인리스 차체의 시험에 의한 구조강도 평가)

  • Yoon, Sung-Cheol;Jun, Chang-Sung;Kim, Won-kyung
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1523-1526
    • /
    • 2007
  • This study introduces the testing results of the carbody. The load test was performed to evaluate the structural characteristic and stability of the stainless carbody. The carbody is made of stainless steel. The body structure consisted of side frame, under frame, roof frame, and end frame. Of these components, the side frame and under frame were the most important components considering the vehicle and passenger loads. Loading test were performed under the condition based on "Performance Test Standard for Electrical Multiple Unit". The test results showed that the body structure is safe and stable under the condition of designed load.

  • PDF

Fatigue life evaluation of Electric Car Bogie Frame (전동차 대차 프레임의 피로수명 평가)

  • Seo, Jung-Won;Kwon, Sung-Tae;Kim, Jeong-Guk
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1517-1522
    • /
    • 2007
  • Bogie frame of the electric car is an important structural member for the support of vehicle loading. In general, more than 25 years' durability is necessary. A lot of study has been carried out for the prediction of the structural integrity of the bogie frame in experimental and theoretical domains. The objective of this paper is to estimate the structural integrity of the bogie frame of an electric car, which is under the running test. F.E. analysis of bogie frame was performed to find locations for attaching strain gage and to estimate static stress. Dynamic stress were measured by using strain gage in order to evaluate the structural integrity of the bogie frame.

  • PDF

A Study on Analysis of Load Test Result of Bogie Frame for New Electrical Multiple Unit (신형전동차 대차프레임 하중시험결과 분석 연구)

  • Kim Won-kyung;Yoon Sung-Cheol;Jun Chang-Sung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1056-1062
    • /
    • 2005
  • This paper describes the results of structure analysis and load test of a bogie frame. The purpose of the test is to evaluate the safety and functionality of the bogie frame under maximum load. The bogie system consist of the bogie frame, suspensions, whee/sets, a brake system and a transmission system. Of these components, the bogie frame is the major component subjected to the vehicle and passenger loads. The evaluation method used the JIS E 4207 specifications throughout static load test. The test results have shown the bogie frame to be safe under design load conditions.

  • PDF

Evaluation on Seismic Performance of Existing Frame retrofitted with RC CIP Infill Walls (기존 골조의 내진성능 향상을 위한 철근콘크리트 현장타설 끼움벽의 보강성능 평가)

  • Kim, Sun-Woo;Yun, Hyun-Do;Kim, Yun-Su;Ji, Sang-Kyu
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.53-56
    • /
    • 2008
  • A reinforced concrete (RC) cast-in-place (CIP) infill wall retrofitting method may provide an improved seismic performance and economical efficiency for the non-ductile rahmen structures. In this study, four one story-one bay non-ductile frame were constructed and retrofitted with CIP infill wall to evaluate seismic performance of CIP infill wall-frame. From the test results, infill wall-frame exhibited a marked increase in shear strength compared to non-ductile RC frame specimen. But the ductility and story-drift at maximum load were decreased when shear strength of infill wall larger than that of existing RC frame. Therefore, it is confirmed that adequate reinforcement detail is required to assure sufficient seismic performance.

  • PDF