• Title/Summary/Keyword: evacuation space

Search Result 182, Processing Time 0.027 seconds

Economic and Evacuation Time Analysis of Horizontally-installed Indoor Emergency Exit (하향식 피난구의 경제성 및 피난 소요시간 분석)

  • Liu, Yue;Kim, Sun-Kuk;Kim, Ki-Hyuk;Lee, Dong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.363-373
    • /
    • 2018
  • Evacuation facilities are installed so that people can evacuate high-rise apartment houses when it is impossible to escape fire through the front door. The households of apartment houses may escape the building in two ways, which will reduce loss of lives. This study examined the characteristics of two-way evacuation facilities, including a light-weight partition wall, shelter space at the balcony and horizontally-installed indoor emergency exit. Then, it proposed a horizontally-installed outdoor emergency exit that improved the problems of the examined facility types, and analyzed its economic-feasibility. When a horizontally-installed emergency exit instead of a traditional type to escape from fire is used, people may be more autonomous in deciding whether active evacuation is possible or not. Thus, the time required to evacuate the building with 4 different evacuation methods using the stairs and horizontally-installed emergency exit was simulated in consideration of the impact of evacuation methods that people choose on the time required for evacuation using pathfinder. Then, the simulation results were compared and analyzed. Any appropriate evacuation method to reduce the time required for evacuation was predicted, analyzed and decided. As a result of this study, it was analyzed that the high - rise apartment top - down type evacuation zone can shorten the total evacuation time compared to the staircase type.

A Study on Appropriateness of Performance Criteria of Smoke Control System for Underground Spaces (I) (지하공간에 대한 제연설비 성능기준의 적정성 고찰(I))

  • Ahn, Chan-Sol;Kim, Heung-Youl;Yoo, Yong-Ho;Jeon, Gyu-Yeop
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.103-106
    • /
    • 2008
  • This study is intended to evaluate the characteristics of smoke spreading and the appropriateness of evacuation time extended by operation of smoke control system during fire within the underground space of the building structured in compliance with the smoke control system performance criteria from the local fire safety standard, which has been currently applied to the buildings in Korea. Using the heat release per unit weight of the combustibles, a numerical analysis both in case of smoke control system in operation and the system not in operation was carried out at the several different shopping malls. From the viewpoint of securing the evacuation time, the results were compared in an attempt to assess the appropriateness of the fire safety criteria.

  • PDF

The study on interval calculation of cross passage in undersea tunnel by quantitative risk assesment method (해저철도터널(목포-제주간) 화재시 정량적 위험도 평가기법에 의한 피난연결통로 적정간격산정에 관한 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • Quantitative Mokpo-Jeju undersea tunnel is currently on the basis plan for reviewing validation. As for the cross section shape for express boat of 105 km line, sing track two tube is being reviewed as the Euro tunnel equipped with service tunnel. Also, 10 carriage trains have been planned to operate 76 times for one way a day. So, in this study, quantitative risk assessment method is settled, which is intended to review the optimal space between evacuation connection hall of tunnel by quantitative risk analysis method. In addition to this, optimal evacuation connection hall space is calculated by the types of cross section, which are Type 3 (double track single tube), Type 1 (sing track two tube), and Type 2 (separating double track on tube with partition). As a result, cross section of Type 2 is most efficient for securing evacuation safety, and the evacuation connection space is required for 350 m in Type 1, 400 m in Type 2, and 1,500 m in Type3 to satisfy current domestic social risk assessment standard.

Development of M2M-based Underground Space (subway) Disaster Response Network and EL Display Integrated Board (M2M기반 지하공간(지하철) 재난대응 네트워크 및 EL 디스플레이 통합 보드 개발)

  • Park, Miyun;Kwon, Segon;Park, EunChurn;Lee, Jeonhun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.422-441
    • /
    • 2017
  • Notifying emergency evacuation methods, accurate disaster location and evacuation route guidance can be very active alternatives to quickly minimize evacuation and casualties in disaster situation in the development of subway disaster prevention detection system that detects the disaster signs at the subway station early on the basis of Internet of things and leads passengers to evacuate. It's not easy to ensure perfect functioning of fire fighting facilities and equipments due to underground space structure with narrow exits. Therefore, we developed disaster provision EL Display integrated board that can induce the most efficient evacuation and the field experiment was conducted to examine the practical application in this study. Especially the applicability was verified by field application test because there is no case in which EL panels are used to evacuate disasters.

Spatiotemporal Routing Analysis for Emergency Response in Indoor Space

  • Lee, Jiyeong;Kwan, Mei-Po
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.637-650
    • /
    • 2014
  • Geospatial research on emergency response in multi-level micro-spatial environments (e.g., multi-story buildings) that aims at understanding and analyzing human movements at the micro level has increased considerably since 9/11. Past research has shown that reducing the time rescuers needed to reach a disaster site within a building (e.g., a particular room) can have a significant impact on evacuation and rescue outcomes in this kind of disaster situations. With the purpose developing emergency response systems that are capable of using complex real-time geospatial information to generate fast-changing scenarios, this study develops a Spatiotemporal Optimal Route Algorithm (SORA) for guiding rescuers to move quickly from various entrances of a building to the disaster site (room) within the building. It identifies the optimal route and building evacuation bottlenecks within the network in real-time emergency situations. It is integrated with a Ubiquitous Sensor Network (USN) based tracking system in order to monitor dynamic geospatial entities, including the dynamic capacities and flow rates of hallways per time period. Because of the limited scope of this study, the simulated data were used to implement the SORA and evaluate its effectiveness for performing 3D topological analysis. The study shows that capabilities to take into account detailed dynamic geospatial data about emergency situations, including changes in evacuation status over time, are essential for emergency response systems.

A Study on the Development of Intelligent Guiding Exit Sign System (지능형 피난유도 시스템 개발에 관한 연구)

  • Kim, Yoo-Shik;Sug, Dong-Sub
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.131-134
    • /
    • 2006
  • As modern buildings grow to become diversified, toxic gases and smoke coupled with characteristics of space during a fire increase the risk of large-scaled disaster. It is now urgent to take measures for evacuation and escape directly linked to personal damage. Existing fixed one-way emergency exit light is not enough for efficient evacuation and rescue. Therefore, to ensure quicker escape and evacuation during a fire, two-way radio data system should be devised, which linked with fire detector, helps people in danger to escape quickly and is able to control by a central control system, and the system was found to enhance the efficiency of escape and contribute to safer escape.

A Study on Evacuation Behavior after an Earthquake from the Viewpoint of Children's Composition and Notes in the Great East Japan Earthquake (동일본 대지진 발생후 어린이 작문·기록에 나타난 피난행동에 관한 연구)

  • Won-Jo Jung;Akihito Souda;Takashi Yokoya;Tadasu Iida;Koji Itami;Myung-Kwon Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.331-332
    • /
    • 2022
  • After the Great East Japan Earthquake, reports and books that compiled the testimonies of the victims were published and the situation of the evacuation at that time became known. However, there is very little information on the evacuation situation of children among these data, and it is not fully known what actions the children took and how they evacuated due to an earthquake or tsunami. The purpose of this study is to analyze and examine children's evacuation behavior in the Great East Japan Earthquake, and to predict children's evacuation behavior for future disasters.

  • PDF

Influence of the Fire on Emergency Evacuation Support System (대공간용 비상피난지원 시스템에 화재가 미치는 영향 분석)

  • Kim, JiTae;Sung, Kun Hyuk;Park, Won Hee;Lee, Duck Hee;Woo, Jun You;Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.626-631
    • /
    • 2018
  • An emergency evacuation support system is used to maintain evacuation routes by pressurizing a space inside screens. In cases of fire, it is important to understand the thermal distributions in the tunnel for preventing system failure. In this study, we numerically investigated the effect of fire on an emergency evacuation support system in a large fabric store with some fire scenarios with different combustibles. The critical temperature for system failures was assumed to be $200^{\circ}C$. As a result, the highest temperature was predicted in the ceiling part due to the effect of a ceiling jet, and the fire safety of the screen was secured at distances of 20 to 30 m according to the heat release rate. To prevent the inflow of smoke into the system, it is necessary to maintain more than 5 Pa if positive pressure inside the smoke screen. The results of this study could be useful for designing an emergency evacuation support system.

A Guidance Methodology Using Ubiquitous Sensor Network Information in Large-Sized Underground Facilities in Fire (대형 지하시설물에서 화재발생 시 USN정보를 이용한 피난 유도 방안)

  • Seo, Yonghee;Lee, Changju;Jung, Jumlae;Shin, Seongil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.459-467
    • /
    • 2008
  • Because of the insufficiency of ground space, the utilization of underground is getting more and more in these days. Moreover, underground space is being used not only buildings but multipurpose space for movement, storage and shopping. However, ground space has vital weakness for fire compared to ground space. Especially in case of underground shopping center, there are various stuffs to burn and poisonous gas can be exposed on this count when the space is burned. A large number of casualties can be also occurred from conflagration as underground space has closed structures that prevent rapid evacuation and access. Therefore, this research proposes the guidance methodology for evacuation from conflagration in large-sized underground facilities. In addition, suggested methodology uses high technology wireless sensor information from up-to-date ubiquitous sensor networks. Fire information collected by sensors is integrated with existing underground facilities information and this is sent to guidance systems by inducing process. In the end, this information is used for minimum time paths finding algorithm considering the passageway capacity and distance. Also, usefulness and inadequacies of proposed methodology is verified by a case study.