• Title/Summary/Keyword: evacuation environment

Search Result 129, Processing Time 0.029 seconds

A Study on Reduction Method of Stack Effect at Stairwell of High-Rise Building (고층건물 피난계단에서의 연돌효과 저감방안 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.14-20
    • /
    • 2011
  • As the height of the building increases, the stack effect in stairwell that is main facilities for evacuation becomes stronger. While the pressure rise in stairwell causes difficulties on opening the door for evacuation and has effect on smoke control system, reduction of stack effect will be necessary for providing more safe evacuation environment. The field experiments on pressure field in high-rise building are carried out to present reduction method of stack effect and the numerical analyses using network model are proceeded to design quantitatively the reduction method. As the air flow supplied from outside in lower stair and exhausted to outside in upper stair is formed in stairwell, the stack effect in stairwell is expected to be decreased.

A Study on the Fire Evacuation Assessment Considering Occupied Environment Variation in Existing Buildings (기존 건축물의 사용승인허가 전·후 거주환경을 고려한 화재피난성능평가 연구)

  • Kim, Hak Kyung;Choi, Doo Chan;Kim, In Tae;Kim, Hee Moon;Sim, Hye In
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.105-110
    • /
    • 2016
  • In Korea, fire hazard and risk analysis and response management planning related to existing decrepit buildings, including interior construction and architectural layout revision, due to various occupancy purposes have not been researched or established. Therefore, regulations and technical standards that can manage and reduce fire hazards and risks based on fire hazard analysis and evaluation are required. This study was performed based on a site survey and fire evacuation assessment including performancebased analysis in 3 actual existing buildings to find the life safety issues and provide improvement recommendations.

Modeling and simulation of large crowd evacuation in hazard-impacted environments

  • Datta, Songjukta;Behzadan, Amir H.
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.91-118
    • /
    • 2019
  • Every year, many people are severely injured or lose their lives in accidents such as fire, chemical spill, public pandemonium, school shooting, and workplace violence. Research indicates that the fate of people in an emergency situation involving one or more hazards depends not only on the design of the space (e.g., residential building, industrial facility, shopping mall, sports stadium, school, concert hall) in which the incident occurs, but also on a host of other factors including but not limited to (a) occupants' characteristics, (b) level of familiarity with and cognition of the surroundings, and (c) effectiveness of hazard intervention systems. In this paper, we present EVAQ, a simulation framework for modeling large crowd evacuation by taking into account occupants' behaviors and interactions during an emergency. In particular, human's personal (i.e., age, gender, disability) and interpersonal (i.e., group behavior and interactions) attributes are parameterized in a hazard-impacted environment. In addition, different hazard types (e.g., fire, lone wolf attacker) and propagation patterns, as well as intervention schemes (simulating building repellent systems, firefighters, law enforcement) are modeled. Next, the application of EVAQ to crowd egress planning in an airport terminal under human attack, and a shopping mall in fire emergency are presented and results are discussed. Finally, a validation test is performed using real world data from a past building fire incident to assess the reliability and integrity of EVAQ in comparison with existing evacuation modeling tools.

Applying a big data analysis to evaluate the suitability of shelter locations for the evacuation of residents in case of radiological emergencies

  • Jin Sik Choi;Jae Wook Kim;Han Young Joo;Joo Hyun Moon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.261-269
    • /
    • 2023
  • During a nuclear power plant (NPP) accident, radioactive material may be released into the surrounding environment in the form of a radioactive plume. The behavior of the radioactive plume is influenced by meteorological factors such as wind direction and speed. If the residents are evacuated to a shelter in the direction of the flow of the radioactive plume, the radiation exposure of the residents may increase, contrary to the purpose of the evacuation. To avoid such an undesirable outcome, this paper applies a big data analysis to evaluate the suitability of the shelter locations near 5 NPPs in the Republic of Korea in terms of the seasonal wind direction frequency in those areas. To this end, the wind data measured around the NPPs from 2016 to 2020 were analyzed to derive the seasonal wind direction frequency using a big data analysis. These analyses results were then used to determine how many shelters around NPPs locate in areas with prevailing wind direction per season. Then, suggestions were made on the direction for residents not to evacuate, if possible, that is, the prevailing seasonal wind directions for 5 NPPs, depending on the season in which the accident occurs.

Study on the direction detection based on audible and non-audible signals using smart devices (스마트 디바이스를 활용한 가청, 비가청 신호 기반 피난방향 탐지 기법 연구)

  • Hyun, Byeongchun;Yun, Younguk;Park, Yohan;Kim, Youngok
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • This paper proposes a direction estimation scheme with directional speaker and smart device for evacuation guidance. When there is worst disaster environment filled with smoke and noisy sound, evacuee can not get any information about evacuation routes. The proposed scheme can be used for detecting evacuation routes with audible and inaudible signal from directional speaker. At this point, evacuee can get evacuee guidance by using smartphone application that the proposed scheme is applied. The performance of the proposed scheme is evaluated by experiment with three different types of smart devices in large indoor environment. The purpose of experiment is to detect the direction of transmitted signal from directional speaker. Therefore, The experiment is conducted by analyzing the strength of transmitted signal by distance. The experimental results show that even if the smart device is located up to 20m away from the speaker, it is possible to detect the sending direction of the signal. We confirmed the possibility of the proposed technology in 8kHz and 20kHz signal detection by smart device.

A Study on Improvement Plan for Selection of Evacuation Site through Analysis of Meteorological Data -Focus on Incheon·Siheung·Ansan- (기상관측자료 분석을 통한 위해관리계획 주민대피 장소 선정 개선방안 연구 -인천·시흥·안산 지역을 중심으로-)

  • Jeon, Byeong-Han;Kim, Hyun-Sub;Oh, Seung-Bo;Kim, Hee-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.16-22
    • /
    • 2017
  • This study examined the status of resident evacuation sites notified to nearby communities, centered on business sites subject to the risk management plan of Incheon, Siheung, and Ansan. Through an analysis of the meteorological data, the direction of improvement of the site selection process for the safe evacuation of chemical accidents was studied. Among a total of 111 evacuation sites, 30 schools were selected the most, and 2-3 sites were usually selected for evacuation. As a result of an analysis of the Incheon meteorological data of 2016, the frequency of occurrences was 18.8525% in the NNE wind direction, 18.0328% in the NNW wind direction, 12.2951% in the WSW wind direction, 9.0164% in the SSE direction, 8.4700% in the SW direction, 6.5574% in the W direction, and 5.7376% in the S direction. The NNE wind direction showed the highest frequency, but the other winds showed a relatively high frequency, indicating that the annual wind direction was not biased toward one side.

Development of the intelligent building control system simulator for the performance analysis (인텔리젼트 빌딩 제어 시스템의 성능해석을 위한 시뮬레이터 개발)

  • 배중원;임동진;송규동
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.624-627
    • /
    • 1996
  • To provide pleasant building environment and the ease of maintenance and facility management, many new office buildings are being built as intelligent buildings. Building control systems which are employed in intelligent buildings require advanced types of controllers and varieties of control schemes. Designing and installation of these types of advanced building control systems take a lot of effort and also they are costly. In order to design these systems, it is necessary for the designers to have means to analyze and estimate the performance of control systems. The simulator which is presented in this paper is composed of three parts, HVAC simulation module, elevator simulation module, and evacuation modeling module for the outbreak of fire or similar disasters. In this paper, the functions and modelling method for each module are explained and simulation results are presented.

  • PDF

Analysis of Fire Evacuation Behavior in a Primary School Environment

  • Lee, Chang-Seop;Kim, Hong;A. Kilpatrick;W. Fitzpatrick
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.492-504
    • /
    • 1997
  • The paper compares the statutory requirements for the design mid construction of primary schools in Korea and Scotland with respect to fire safety and examines the attitudes to, and the behavior in, evacuation scenarios of Primary school Pupils in both countries. The key behavioral issues examined are the effectiveness of fire safety training, the level of teacher dependency, the effect of spatial organization and gender differences both within and between Korea and Scotland.

  • PDF