• Title/Summary/Keyword: eutrophication

Search Result 638, Processing Time 0.032 seconds

An Evaluation of Aquatic Environment in the Okchon Stream-Embayment Watershed, Korea (옥천천 (만) 유역 하천과 만입부의 수환경 평가)

  • Kim, Dong-Sup;Lee, Hye-Keun;Maeng, Sung-Jin;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.181-190
    • /
    • 2003
  • An investigation was conducted on the aquatic environment of the Okchon Stream watershed six times from May to September 2002. The results of investigation revealed that variation of environmental factors were quite significant for each stream and reach, showing a significant difference between running water and stagnant water. Aquatic nutrients were relatively low in the upstream, gradually increasing as the influx of treated wastewater into the stream increased. This suggests that the point source definitely affected the nutrient content of the stream. In particular, the variations of SRP and $NH_4$ were very distinct in the watershed compared to other nutrients. Thus, it can be considered as a major factor in evaluating the effect of treated wastewater. Immediately after the influx of treated waste-water, the average content of SRP rose to 919.3 ${\mu}g$ P/l. This was a very effective level in the watershed, suggesting that the percentage of the nutrients in the water was controlled by the content of P. The constant supply of treated wastewater was found to be a critical factor in triggering the increase in chl-a in the embayment of the stream. With the proliferation of the blue-green algae, the content of chl- a ranged 234.5${\sim}$1,692.2 ${\mu}g/l$. The maximum standing crops exceeded $1.0{\times}10^6$ cells/ml in August, which was more than 200 times the level for red tide in the freshwater. This result was well reflected in other environmental factors, with 100% of AFDM/TSS reflecting the severity of water pollution by algae. Therefore, the reduction of P and N con-tents in the treated wastewater is critical in improving the aquatic environment of the stream as well as water quality management for the reservoir.

Water Purification by Inorganic Ion Absorption Character of Water Lettuce (Pistia stratiotes L.) (물상추의 무기이온 흡수 특성을 이용한 수질정화)

  • Lee, Sung Chun;Lee, Jeong Sik
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This study was conducted to investigate the efficiency of water quality remediation and the inorganic ion removal characteristics by floating plant; water lettuce (Pistia stratiotes L.) in a batch reactor. Water lettuce can be used to remove N and P and other inorganic nutrients, by consuming them in the form of plant nutrient. The highest nutrient absorption of water lettuce was $112.5meL^{-1}\;N$ in Sonneveld-2S, $56.6meL^{-1}\;N$ in Sonneveld-1S, $31.8meL^{-1}\;N$ in sewage and P value was also the highest in Sonneveld-2S as $15.6meL^{-1}$ and in sewage as $5.0meL^{-1}$. These results indicated that using water lettuce held some promise in the context of purification of eutrophication. Also water lettuce had a preference for absorption N. Under Sonneveld-2S treatment, nitrogen percentage was the highest in plant tissue due to the highest concentration of nitrogen and removal by water lettuce. Under sewage, percentage of total N in both plant parts was high. Both above and underground parts, P percentage was less than N. It might be due to the fact that the absorption amount of P was less than N by water lettuce. It meaned that the ability of N removal by water lettuce was higher than that of P, relatively. In summary, these results show that the use of this plant was a viable option.

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.

Analysis of Fish Ecology and Water Quality for Health Assessments of Geum - River Watershed (금강본류의 건강성 평가를 위한 어류생태 및 수질 특성분석)

  • Park, Yun-Jeong;Lee, Sang-Jae;An, Kwang Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.2
    • /
    • pp.187-201
    • /
    • 2019
  • This study examined the physicochemical water quality and evaluated the ecological health in 14 sites of Geum River (upstream, mid-stream, and downstream) using the fish community distribution and guilds and eight multi-variable matrices of FAI (Fish Assessment Index) during June 2008-May 2009. The analysis of the water quality variables showed no significant variation in the upstream and mid-stream but a sharp variation due to the accumulation of organic matter from the point where the treated water of Gap and Miho streams flew. The analysis of physicochemical water properties showed that BOD, COD, TN, TP, Cond, and Chl-a tended to increase while DO decreased to cause eutrophication and algae development from the downstream where Miho and Gap stream merged. The analysis of fish community showed that the species richness index and species diversity index increased in the mid-stream area but decreased in the downstream area, indicating the stable ecosystem in the upper stream and the relatively unstable ecosystem in the downstream. The analysis of the species distribution showed that the dominant species were Zacco platypus that accounted for 20.9% of all fish species and Zacco koreanus that accounted for 13.1%. The analysis of the fish tolerance and feeding guild characteristics showed that the sensitive species, the insectivore species, and the aquatic species were dominant in the mid-stream point. On the other hand, contaminants from the sewage water treatment plant of Miho stream had a profound effect in the downstream to show the dominance of tolerant species, omnivorous species, and lentic species. Therefore, it is necessary to improve water quality by reducing the load of urban pollutants and to pay attention to the conservation and restoration of aquatic ecosystems.

An Analysis on the Usability of Unmanned Aerial Vehicle(UAV) Image to Identify Water Quality Characteristics in Agricultural Streams (농업지역 소하천의 수질 특성 파악을 위한 UAV 영상 활용 가능성 분석)

  • Kim, Seoung-Hyeon;Moon, Byung-Hyun;Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.10-20
    • /
    • 2019
  • Irregular rainfall caused by climate change, in combination with non-point pollution, can cause water systems worldwide to suffer from frequent eutrophication and algal blooms. This type of water pollution is more common in agricultural prone to water system inflow of non-point pollution. Therefore, in this study, the correlation between Unmanned Aerial Vehicle(UAV) multi-spectral images and total phosphorus, total nitrogen, and chlorophyll-a with indirect association of algal blooms, was analyzed to identify the usability of UAV image to identify water quality characteristics in agricultural streams. The analysis the vegetation index Normalized Differences Index (NDVI), the Normalized Differences Red Edge(NDRE), and the Chlorophyll Index Red Edge(CIRE) for the detection of multi-spectral images and algal blooms collected from the target regions Yang cheon and Hamyang Wicheon. The analysis of the correlation between image values and water quality analysis values for the water sampling points, total phosphorus at a significance level of 0.05 was correlated with the CIRE(0.66), and chlorophyll-a showed correlation with Blue(-0.67), Green(-0.66), NDVI(0.75), NDRE (0.67), CIRE(0.74). Total nitrogen was correlated with the Red(-0.64), Red edge (-0.64) and Near-Infrared Ray(NIR)(-0.72) wavelength at the significance level of 0.05. The results of this study confirmed a significant correlations between multi-spectral images collected through UAV and the factors responsible for water pollution, In the case of the vegetation index used for the detection of algal bloom, the possibility of identification of not only chlorophyll-a but also total phosphorus was confirmed. This data will be used as a meaningful data for counterplan such as selecting non-point pollution apprehensive area in agricultural area.

Material Life Cycle Assessment on Mg2NiHx-5 wt% CaO Hydrogen Storage Composites (Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 물질전과정평가)

  • Shin, Hyo-Won;Hwang, June-Hyeon;Kim, Eun-A;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2021
  • Material Life Cycle Assessment (MLCA) was performed to analyze the environmental impact characteristics of the Mg2NiHx-5 wt% CaO hydrogen storage composites' manufacturing process. The MLCA was carried out by Gabi software. It was based on Eco-Indicator 99' (EI99) and CML 2001 methodology. The Mg2NiHx-5 wt% CaO composites were synthesized by Hydrogen Induced Mechanical Alloying (HIMA). The metallurgical, thermochemical characteristics of the composites were analyzed by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), specific surface area analysis (Bruner-Emmett-Teller, BET), and thermogravimetric analysis (TGA). As a result of the CML 2001 methodology, the environmental impact was 78% for Global Warming Potential (GWP) and 22% for Eutrophication Potential (ETP). In addition, as a result of applying the EI 99' methodology, the acidification was the highest at 43%, and the ecotoxicity was 31%. Accordingly, the amount of electricity used in the manufacturing process may have an absolute effect on environmental pollution. Also, it is judged that the leading cause of Mg2NiHx-5 wt% CaO is the addition of CaO. Ultimately, it is necessary to research environmental factors by optimizing the process, shortening the manufacturing process time, and exploring eco-friendly alternative materials.

Spatio-temporal Fluctuations with Influences of Inflowing Tributary Streams on Water Quality in Daecheong Reservoir (대청호의 시공간적 수질 변화 특성 및 호수내 유입지천의 영향)

  • Kim, Gyung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.158-173
    • /
    • 2012
  • The objectives of this study were to analyze the longitudinal gradient and temporal variations of water quality in Daecheong Reservoir in relation to the major inflowing streams from the watershed, during 2001~2010. For the study, we selected 7 main-stream sites of the reservoir along the main axis of the reservoir, from the headwater to the dam and 8 tributary streams. In-reservoir nutrients of TN and TP showed longitudinal declines from the headwater to the dam, which results in a distinct zonation of the riverine ($R_z$, M1~M3), transition ($T_z$, M4~M6), and lacustrine zone ($L_z$, M7) in water quality, as shown in other foreign reservoirs. Chlorophyll-a (CHL) and BOD as an indicator of organic matter, were maximum in the $T_z$. Concentration of total phosphorus (TP) was the highest (8.52 $mg\;L^{-1}$) on March in the $R_z$, and was the highest (165 ${\mu}g\;L^{-1}$) in the $L_z$ on July. Values of TN was the maximum (377 ${\mu}g\;L^{-1}$) on August in the $R_z$, and was the highest (3.76 $mg\;L^{-1}$) in the $L_z$ on August. Ionic dilution was evident during September~October, after the monsoon rain. The mean ratios of TN : TP, as an indicator of limiting factor, were 88, which indicates that nitrogen is a surplus for phytoplankton growth in this system. Nutrient analysis of inflowing streams showed that major nutrient sources were headwater streams of T1~T2 and Ockcheon-Stream of T5, and the most influential inflowing stream to the reservoir was T5, which is located in the mid-reservoir, and is directly influenced by the waste-water treatment plants. The key parameters, influenced by the monsoon rain, were TP and suspended solids (SS). Empirical models of trophic variables indicated that variations of CHL in the $R_z$ ($R^2$=0.044, p=0.264) and $T_z$ ($R^2$=0.126, p=0.054) were not accounted by TN, but were significant (p=0.032) in the $L_z$. The variation of the log-transformed $I_r$-CHL was not accounted ($R^2$=0.258, p=0.110) by $I_w$-TN of inflowing streams, but was determined ($R^2$=0.567, p=0.005) by $I_w$-TP of inflowing streams. In other words, TP inputs from the inflowing streams were the major determinants on the in-reservoir phytoplankton growth. Regression analysis of TN : TP suggested that the ratio was determined by P, rather than N. Overall, our data suggest that TP and suspended solids, during the summer flood period, should be reduced from the eutrophication control and P-input from Ockcheon-Stream should be controlled for water quality improvement.

Seasonal Variation of Water Quality in a Shallow Eutrophic Reservoir (얕은 부영양 저수지의 육수학적 특성-계절에 따른 수질변화)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.180-192
    • /
    • 2004
  • This study was carried out to assess the seasonal variation of water quality and the effect of pollutant loading from watershed in a shallow eutrophic reservoir (Shingu reservoir) from November 2002 to February 2004, Stable thermocline which was greater than $1^{\circ}C$ per meter of the water depth formed in May, and low DO concentration (< 2 mg $O_2\;L^{-1}$) was observed in the hypolimnion from May to September, 2003. The ratio of euphotic depth to mixing depth ($Z_{eu}/Z_{m}$) ranged 0.2 ${\sim}$ 1.1, and the depth of the mixed layer exceeded that of the photic layer during study period, except for May when $Z_{eu}$ and $Z_{m}$ were 4 and 4.3 m, respectively. Most of total nitrogen, ranged 1.1 ${\sim}$ 4.5 ${\mu}g\;N\;L^{-1}$, accounted for inorganic nitrogen (Avg, 58.7%), and sharp increase of $NH_3$-N Hand $NO_3$-N was evident during the spring season. TP concentration in the water column ranged 43.9 ${\sim}$ 126.5 ${\mu}g\;P\;L^{-1}$, and the most of TP in the water column accounted for POP (Avg. 80%). During the study period, DIP concentration in the water column was &;lt 10 ${\mu}g\;P\;L^{-1}$ except for July and August when DIP concentration in the hypolimnion was 22.3 and 56.7 ${\mu}g\;P\;L^{-1}$, respectively. Increase of Chl. a concentration observed in July (99 ${\mu}g\;L^{-1}$) and November 2003 (109 ${\mu}g\;L^{-1}$) when P loading through two inflows was high, and showed close relationship with TP concentration (r = 0.55, P< 0.008, n = 22). Mean Chl. a concentration ranged from 13.5 to 84.5 mg $L^{-1}$ in the water column, and the lowest and highest concentration was observed in February 2004 (13.5 ${\pm}$ 1.0 ${\mu}g\;L^{-1}$) and November 2003 (84.5 ${\pm}$29.0 ${\mu}g\;L^{-1}$), respectively. TP concentration in inflow water increased with discharge (r = 0.69, P< 0.001), 40.5% of annual total P loading introduced in 25 July when there was heavy rainfall. Annual total P loading from watershed was 159.0 kg P $yr^{-1}$, and that of DIP loading was 126.3 kg P $yr^{-1}$ (77.7% of TP loading. The loading of TN (5.0ton yr-1) was 30 times higher than that of TP loading (159.0 kg P yr-1), and the 78% of TN was in the form of non-organic nitrogen, 3.9 ton $yr^{-1}$ in mass. P loading in Shingu reservoir was 1.6 g ${\cdot}$ $m^{-2}$ ${\cdot}$ $yr^{-1}$, which passed the excessive critical loading of Vollenweider-OECD critical loading model. The results of this study indicated that P loading from watershed was the major factor to cause eutrophication and temporal variation of water quality in Shingu reservoir Decrease by 71% in TP loading (159 kg $yr^{-1}$) is necessary for the improvement of mesotrophic level. The management of sediment where tine anaerobic condition was evident in summer, thus, the possibility of P release that can be utilized by existing algae, may also be considered.