• Title/Summary/Keyword: eutrophic water

Search Result 296, Processing Time 0.031 seconds

Viability Test and Bulk Harvest of Marine Phytoplankton Communities to Verify the Efficacy of a Ship's Ballast Water Management System Based on USCG Phase II (USCG Phase II 선박평형수 성능 평가를 위한 해양 식물플랑크톤군집 대량 확보 및 생물사멸시험)

  • Hyun, Bonggil;Baek, Seung Ho;Lee, Woo Jin;Shin, Kyoungsoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.483-489
    • /
    • 2016
  • The type approval test for USCG Phase II must be satisfied such that living natural biota occupy more than 75 % of whole biota in a test tank. Thus, we harvested a community of natural organisms using a net at Masan Bay (eutrophic) and Jangmok Bay (mesotrophic) during winter season to meet this guideline. Furthermore, cell viability was measured to determine the mortality rate. Based on the organism concentration volume (1 ton) at Masan and Jangmok Bay, abundance of ${\geq}10$ and $<50{\mu}m$ sized organisms was observed to be $4.7{\times}10^4cells\;mL^{-1}$and $0.8{\times}10^4cells\;mL^{-1}$, and their survival rates were 90.4 % and 88.0 %, respectively. In particular, chain-forming small diatoms such as Skeletonema costatum-like species were abundant at Jangmok Bay, while small flagellate ($<10{\mu}m$) and non chain-forming large dinoflagellates, such as Akashiwo sanguinea and Heterocapsa triquetra, were abundant at Masan Bay. Due to the size-difference of the dominant species, concentration efficiency was higher at Jangmok Bay than at Masan Bay. The mortality rate in samples treated by Ballast Water Treatment System (BWMS) (Day 0) was a little lower for samples from Jangmok Bay than from Masan Bay, with values of 90.4% and 93%, respectively. After 5 days, the mortality rates in control and treatment group were found to be 6.7% and >99%, respectively. Consequently, the phytoplankton concentration method alone did not easily satisfy the type approval standards of USCG Phase II ($>1.0{\times}10^3cells\;mL^{-1}$ in 500-ton tank) during winter season, and alternative options such as mass culture and/or harvesting system using natural phytoplankton communities may be helpful in meeting USCG Phase II biological criteria.

Chemical Water Quality and Multi-metric Eco-health Model Assessments in Baekma River (백마강의 화학적 수질특성 및 다변수 생태 건강도 모델 평가)

  • Han, Jeong-Ho;Kim, Hyun-Mac;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.2
    • /
    • pp.96-104
    • /
    • 2013
  • The objectives of this study were to analyze chemical the water quality related to the fish community and to evaluate the ecosystem health based on the faunal composition and guild structure in 2007 in Baekma River. Mean concentrations of biological oxygen demand (BOD) and chemical oxygen demand (COD) were 2.8 and $4.0mg\;L^{-1}$, respectively and total nitrogen (TN) and total phosphorus (TP) were $5.0mg\;L^{-1}$ and $158{\mu}g\;L^{-1}$, which is indicating that the river is in an eutrophic state. Especially, organic pollution and eutrophication occurred in the downstream reach of Baekma River. A total of 19 fish species were collected during the study and the most dominant species was Opsariichthys uncirostris amurensis accounted 48% of the total abundances. The proportion of sensitive species was low (2.3%), compared with that of tolerant species (71.8%). These results suggest that tolerant species and the biotic quality of the fish community was severely degraded. According to the multi-metric model, the Index of Biological Integrity (IBI), the mean model value of the fish community in Baekma River was estimated as 14.8 indicating a "poor" condition. The minimum values of the IBI were observed in the downstreams, and this was mainly attributed to chemical pollutions of nutrients (N, P) and organic matters.

An Application of $^{13}C$ Tracer for the Determination of Size Fractionated Primary Productivity in Upper Stream of Lake Shihwa ($^{13}C$ 추적자를 사용한 시화호 상류역에서의 식물플랑크톤 크기에 따른 1차생산성 측정에 관한 연구)

  • Lee, Yeon-Jung;Kim, Min-Seob;Won, Eun-Ji;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.93-99
    • /
    • 2006
  • Primary productivity was determined by using $^{13}C$ tracer according to different cell size of phytoplank-ton through in situ incubation experiments in upper stream of the Lake Shihwa. The average concentration of chlorophyll a was 14 ${\mu}g\;L^{-1}$ demonstrating an eutrophic water. The ratio of POC/Chl-a was lower than 30, reflecting that the origin of organic matter might be mainly phytoplankton. The primary productivity was 93.9 mgC m^{-2}\;d^{-1}$ at St. 1, which was about 40-fold lower than the average value of the lake (3,972 mgC m^{-2}\;d^{-1}$) determined by Choi et al. (1997) before opening of gate but it was higher than the average primary productivity (3.98 mgC m^{-2}\;d^{-1}$) reported by KOWACO in 1993 before constructing dam. The fractionated size (20 ${\sim}$ 53 ${\mu}m$) of phytoplankton community account for 51% of total primary productivity, indicating the highest assimilation rate. This study suggest that $^{13}C$ tracer methodology should be applied as a useful approach for the water ecological research in the future.

Study of the Trophic State Assessment and Analysis of Water Quality Improvement by Dredging in Hwoiya Reservoir (회야호 부영양화 평가 및 준설에 의한 수질개선 효과 분석 연구)

  • Suh, Myung-Gyo;Lee, Sang-Hyeon;Suh, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6943-6951
    • /
    • 2014
  • The trophic state assessment of the Hwoiya reservoir was estimated using the Trophic state indices (TSIs) of Carlson and Aizaki using the transparency and concentrations of chlorophyll-a and total phosphorus obtained from two sites of the reservoir. The TSIs assessments showed that eutrophic phenomena occur frequently in the Hwoiya reservoir. In addition, strategies to reduce the phosphorus especially would be prepared because the Hwoiya reservoir exceeded phosphorus-limiting state of 17 < TN/TP (total nitrogen/total phosphorus). Three scenarios for a simulation of the dredging effect of sediments on the water quality using the WASP7 model were made at two sites, which were 10% (scenario 1), 40% (scenario 2) and 60% elution of the pollutants from sediments (scenario 3). In the most elution case (60%), scenario 3, it was considered that 6.4% TN and 9.3% TP at site 1, and 3.9% TN and 5.6% TP at site 2 could be reduced.

The properties of algal degradation and gas emission by thermophilic oxic process (고온호기발효장치를 이용한 조류 분해 및 가스 발생특성)

  • Kang, Changmin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.57-64
    • /
    • 1999
  • The purpose of this study is to establish effective conditions for controlling $CH_4$, $N_2O$ emission from organic Waste / wastewater treatment processes. Continuous and batch experiments were conducted to treat the micro algae from polluted and eutrophicated lakes through the thermophilic oxic process. The microalgae used were mainly Microcystis sp.(collected from eutrophic lake) and Chlorella sp. (cultured in laboratory) Wasted cooking oil was added by aid-heating source. Physico-chemical components of sludges and microalgae were analyzed. In batch experiments, air supply was changed from 50ml/min to 150ml/min. The temperature. water content and drained water were affected by the air flow rate at initial stage. However, there was almost no influence of air flow rate on them in middle and last stages. At air flow rate of 100ml/min, the degradation rate of organic material was higher than that at other air flow rates. $CO_2$ concentration in exhaust was proportional to the strength of aeration, especially at initial stage when degradation was active. $CH_4$ with low concentration was detected only at starting stage when air diffusion was not enough. $N_2O$ production was not affected by variation of air supply. In continuous experiments no matter what the dewatering methods (with PAC and without PAC) and media (wood chip and reed chip) were changed, $N_2O$ was almost not affected by variation of injected air. Result showed that the reed chips using for lake purification could be used as media for thermophilic oxic process in lake and marshes area. $CO_2$ concentration was not so much affected by the change of dewatering methods and media types. $CH_4$ was not detected in the experimental period. So it can be shown that the thermophilic oxic process had been well operated in wide handling conditions regardless of media and dewatering methods.

  • PDF

Distribution and Dynamics of the Total Bacterial Number in the Kyongan Stream and Paltang Reservoir (경안천과 팔당호에서 총세균수의 분포 및 동태)

  • Park, Kyung-Mi;Hwang, Soon-Jin;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.2 s.94
    • /
    • pp.119-125
    • /
    • 2001
  • Total bacterial density was investigated in the main stream and tributaries of the Kyongan Stream and inlet parts of Paltang Reservoir from September 2000 to February 2001 by acridine orange direct count (AODC) method. Total bacterial number in the Kyongan Stream was mainly under influence of the effluent discharge of sewage wastewater treatment plant (SWTP) located in the upstream or downstream. Decreasing rate with water flowing distance (km) in the main stream is $0.13\;{\time}\;10^6$ cells/ml, and it was estimated to much accumulating quantity on the stream bed during transport to downstream. Average values of total bacterial number in September${\sim}$October, November and December${\sim}$February were range $1.74{\sim}3.10{\time}10^6$, $1.86{\sim}7.30{\time}10^6$ and $4.56{\sim}8.75{\time}10^6$cells/ml, respectively, and were high at low temperature than that of high temperature period. Total bacterial number was more abundant at below $10^{\circ}C$ with $2.1{\sim}3.0$ folds than at above $10^{\circ}C$. Water quality by total bacterial number was classify to eutrophic and the potential of wastewater treated effluent for the microbial contamination assessed to very high. The results of this study indicate that the management of point source, SWTP effluent, is urgent to mitigate bacterial impact of Paltang Reservoir as well as the Kyongan Stream.

  • PDF

Control of Microalgae Using a Porous Silicate Material, CellCaSi (규산질다공체 (CellCaSi)에 의한 미세조류 제어)

  • Lee, Seog-June;Yoon, Byung-Dae;Lee, Wook-Jae;Lee, Seung-Kyou;Choi, Long;Oh, Hee-Mock
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.145-151
    • /
    • 2000
  • A porous silicate material named as CellCaSi was tested for the removal of microalgae in the water sample from a eutrophic pond. The effects of the CellCaSi on water qualities were investigated on the basis of both the particle size (under 1, 2,and 4 mm) and the added amount (0, 1, 5, and 10 g/l) of the CellCaSi. The removal efficiency of chlorophyll-a was highest at 79% by the addition of 10 g/l of the CellCaSi (under 1 mm) at day 3 after treatment. That is, the removal efficiency of chlorophyll-a by the CellCaSi increased with smaller particle size and more added amount. The dominant species, Chlorella ellipsoidea, was not changed by the addition of the CellCaSi, but the species number and standing crop of the algae diminished. Total nitrogen concentration was not changed much by the addition of the CellCaSi, whereas total phosphorus concentration was reduced. pH and turbidity were not changed by the addition of the CellCaSi, whereas conductivity showed a high correlation with the amount of added CellCaSi ($Y\;=\;29.2 {\cdot}X+306$, $r^2\;=0.984$). Therefore, it seems to be necessary to limit the amount of the CellCaSi under 6.6 g/1 in consideration of a registered maximum conductivity of $500\;{\mu}mhos/cm$ for raw and potable waters.

  • PDF

Distributional characteristics of phytoplankton and nutrient limitation during spring season in Jinhae Bay (춘계 진해만에서 식물플랑크톤 증식과 제한영양염 분포특성)

  • Son, Moonho;Kim, Dongseon;Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3345-3350
    • /
    • 2014
  • We investigated to assess the relationships between the major nutrients and phytoplankton dynamics during the spring season in 2010 and 2011 at 23 stations in Jinhae Bay, Korea. The bay is divided into four different zones based on pollutant sources and geographical characteristics. Nutrient limitation (>80%) was significant in Zone II, which is located in central bay and is influenced by the water well mixed from outer bay. The limited nutrient was followed in Zone III and IV that was occupying between 17% and 83%. However, the low levels are being kept below 35% in Zone I, which is characterized by the semi-enclosed eutrophic area of Masan and Haegam bays. Based on the PCA (principle component analysis) analysis, the nitrogen (N) sources in 2010 were particularly dominant and it may be due to the water mixing and wastewater formed from bottom layers and sewage. In 2011, major nutrients including nitrogen, silicon and phosphorus were dominant in the bay and are supplied by the river discharge after rainfalls with low salinity conditions. In particular, the N nutrients being supplied in 2010 are correlated with pennate diatoms Pseudo-nitzchia spp. and is not related to the phytoplankton population densities in 2011. The present study suggests that N sources play an important role in the proliferation of diatom, and the rapid nutrient uptakes by them are potential nutrient limitation factors in the bay.

Limno-Biological Investigation of Lake Ok-Jeong (옥정호의 육수생물학적 연구)

  • SONG Hyung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-25
    • /
    • 1982
  • Limnological study on the physico-chemical properties and biological characteristics of the Lake Ok-Jeong was made from May 1980 to August 1981. For the planktonic organisms in the lake, species composition, seasonal change and diurnal vertical distribution based on the monthly plankton samples were investigated in conjunction with the physico-chemical properties of the body of water in the lake. Analysis of temperature revealed that there were three distinctive periods in terms of vertical mixing of the water column. During the winter season (November-March) the vertical column was completely mixed, and no temperature gradient was observed. In February temperature of the whole column from the surface to the bottom was $3.5^{\circ}C$, which was the minimum value. With seasonal warming in spring, surface water forms thermoclines at the depth of 0-10 m from April to June. In summer (July-October) the surface mixing layer was deepened to form a strong thermocline at the depth of 15-25 m. At this time surface water reached up to $28.2^{\circ}C$ in August, accompanied by a significant increase in the temperature of bottom layer. Maximum bottom temperature was $r5^{\circ}C$ which occurred in September, thus showing that this lake keeps a significant turbulence Aehgh the hypolimnial layer. As autumn cooling proceeded summer stratification was destroyed from the end of October resulting in vertical mixing. In surface layer seasonal changes of pH were within the range from 6.8 in January to 9.0 in guutuost. Thighest value observed in August was mainly due to the photosynthetic activity of the phytoplankton. In the surface layer DO was always saturated throughout the year. Particularly in winter (January-April) the surface water was oversaturated (Max. 15.2 ppm in March). Vertical variation of DO was not remarkable, and bottom water was fairly well oxygenated. Transparency was closely related to the phytoplankton bloom. The highest value (4.6 m) was recorded in February when the primary production was low. During summer transparency decreased hand the lowest value (0.9 m) was recorded in August. It is mainly due to the dense blooming of gnabaena spiroides var. crassa in the surface layer. A. The amount of inorganic matters (Ca, Mg, Fe) reveals that Lake Ok-Jeong is classified as a soft-water lake. The amount of Cl, $NO_3-N$ and COD in 1981 was slightly higher than those in 1980. Heavy metals (Zn, Cu, Pb, Cd and Hg) were not detectable throughout the study period. During the study period 107 species of planktonic organisms representing 72 genera were identified. They include 12 species of Cyanophyta, 19 species of Bacillariophyta, 23 species of Chlorophyta, 14 species of Protozoa, 29 species of Rotifera, 4 species of Cladocera and 6 species of Copepoda. Bimodal blooming of phytoplankton was observed. A large blooming ($1,504\times10^3\;cells/l$ in October) was observed from July to October; a small blooming was present ($236\times10^3\;cells/l$ in February) from January to April. The dominant phytoplankton species include Melosira granulata, Anabaena spiroides, Asterionella gracillima and Microcystis aeruginota, which were classified into three seasonal groups : summer group, winter group and the whole year group. The sumner group includes Melosira granulate and Anabaena spiroides ; the winter group includes Asterionella gracillima and Synedra acus, S. ulna: the whole year group includes Microtystis aeruginosa and Ankistrodesmus falcatus. It is noted that M. granulate tends to aggregate in the bottom layer from January to August. The dominant zooplankters were Thermocpclops taihokuensis, Difflugia corona, Bosmina longirostris, Bosminopsis deitersi, Keratelle quadrata and Asplanchna priodonta. A single peak of zooplankton growth was observed and maximum zooplankton occurrence was present in July. Diurnal vertical migration was revealed by Microcystis aeruginosa, M. incerta, Anabaena spiroides, Melosira granulata, and Bosmina longirostris. Of these, M. granulata descends to the bottom and forms aggregation after sunset. B. longirostris shows fairly typical nocturnal migration. They ascends to the surface after sunset and disperse in the whole water column during night. Foully one species of fish representing 31 genera were collected. Of these 13 species including Pseudoperilnmpus uyekii and Coreoleuciscus splendidus were indigenous species of Korean inland waters. The indicator species of water quality determination include Microcystis aeruginosa, Melosira granulata, Asterionelta gracillima, Brachionus calyciflorus, Filinia longiseta, Conochiloides natans, Asplanchna priodonta, Difflugia corona, Eudorina elegans, Ceratium hirundinella, Bosmina longirostris, Bosminopsis deitersi, Heliodiaptomus kikuchii and Thermocyclops taihokuensis. These species have been known the indicator groups which are commonly found in the eutrophic lakes. Based on these planktonic indicators Lake Ok-Jeong can be classified into an eutrophic lake.

  • PDF

Filter-Feeding Effect of a Freshwater Bivalve (Corbicula leana PRIME) on Phytoplankton (식물플랑크톤에 대한 담수산 패류 (참재첩)의 섭식효과)

  • Kim, Ho-Sub;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.298-309
    • /
    • 2001
  • The purpose of this study was to evaluate the filtering-feeding effect of a freshwater mussel (Corbicula leana) on the phytoplankton communities in two lakes with different trophic conditions between June and September, 2000. Manipulation experiments were conducted with two treatments (the control and mussel addition), and each established in duplicate 10 l chambers. Both ambient nutrient (TN, TP) and chlorophyll-a concentrations were significantly (p<0.01) higher in Lake Ilgam than Lake Soyang. Cyanophytes (Microcystis, Oscillatoria, Lyngbya and Dactylococcopis) consistently dominated algal community in Lake llgam, while flagellated algae (Dinobryon divergence, Mallomonas, Rhodomonas) and cyanophytes (Microcystis)dominated in Lake Soyang. The net exponential death rate ($R\;=\;day^{-1}$) of total phytoplankton in the mussel treatment ranged $1.70{\sim}7.39$ and $0.38{\sim}1.64$ in Lakes Soyang and Ilgam, respectively. Mean filtering rate standardized by mussel AFDW ($ml\;mgAFDW^{1}\;h^{-1}$) was much higher in Lake Soyang ($1.70{\sim}3.06$) than in Lake Ilgam($0.24{\sim}0.88$0.24~o.88). Estimating FR per mussel, 1 mussel filtered $1.6{\sim}7.8\;l$ per day and $1.7{\sim}3.0\;l$ per day in Lakes Soyang and Ilgam, respectively. Based on tile C-flux tobiomass ratio, Corbicula leana consumed $0.8{\sim}4.4$ fold of phytoplankton standing stock in Lake Soyang, and $0.4{\sim}1.6$ fold in Lake Ilgam per day. Mussel feeding resulted in increase of SRP concentration by $30{\sim}50%$, compared with the control. The results of this study suggest that filter-feeding activity of Corbicula leana varies depending on the phytoplankton density and community composition. The high seston consumption rate of Corsicuja Jeaua even in a eutrophic lake suggests that biomanipulation approach using filter-feeding mussels can be used far wate rquality management in small eutrophic reservoirs.

  • PDF