• Title/Summary/Keyword: eutectic Si

Search Result 183, Processing Time 0.023 seconds

Microstructures and Mechanical Properties of SiCp/ Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Extrusion (Rheo-compocasting 및 열간압출에 의하여 제조한 Al-Si-Mg / SiC 입자강화 복합재료의 조직 및 기계적 특성)

  • Lee, Hag-Ju;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.335-345
    • /
    • 1992
  • Aluminum alloy matrix composites reinforced with various amounts of SiC particles have been produced by rheo-compocasting followed by hot extrusion. A relatively uniform distribution of SiC particles in the composites was obtained. The amounts of pore and SiC particles cluster were relatively small in the composites. Particle free zones were observed in the hot extruded composites when the amount of SiC particles was less than 20 vol%. However, the width of particle free zone decreases with the increase of SiC particle content. Eutectic Si phase play an important role for improving bonding between SiC particle and matrix. Tensile and yield strength increased with the increase of SiC particle content. the strenthening effect of SiC particle addition was effective even at relatively high temperature of 573 K.

  • PDF

The Optimal Solution Treatment Condition in a Al-Si-Cu AC2B Alloy (Al-Si-Cu계 AC2B 합금의 최적 용체화 처리 조건)

  • Jung, Jae-Gil;Park, June-Soo;Ha, Yang-Soo;Lee, Young-Kook;Jun, Joong-Hwan;Kang, Hee-Sam;Lim, Jong-Dae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.223-227
    • /
    • 2009
  • The precipitates, hardness, and tensile properties of Al-6.2Si-2.9Cu AC2B alloy were investigated with respect to solution treatment time at $500^{\circ}C$. $Al(Cu)-Al_2Cu$ eutectic, Si, ${\theta}-(Al_2Cu)$, and $Q-(Al_5Cu_2Mg_8Si_6)$ phases were observed in the as-cast specimen. With increasing the solution treatment time at $500^{\circ}C$, the $Al(Cu)-Al_2Cu$ eutectic and ${\theta}-(Al_2Cu)$ phases were gradually reduced and finally almost disappeared in 5 h. The mechanical properties, such as hardness, tensile strength, and elongation, were improved with solution treatment time until about 5 h due to the dissolution of the $Al_2Cu$ particles. With further holding time, the mechanical properties did not change much. The solution treated specimens for over 5 h at $500^{\circ}C$ exhibit almost the same tensile properties even after aging at $250^{\circ}C$ for 3.5 h. Accordingly, the optimal solution treatment condition of the Al-Si-Cu AC2B alloy is considered to be 5 h at $500^{\circ}C$.

The Effect of Sr on the Microstructures of Hypereutectic Al-Si Alloys (과공정 Al-Si 합금의 미세조직에 영향을 미치는 Sr의 영향)

  • Kim, Myung-Han
    • Journal of Korea Foundry Society
    • /
    • v.26 no.3
    • /
    • pp.140-145
    • /
    • 2006
  • Sr, added in the hypereutectic Al-Si alloys, is absorbed on the surfaces of primary Si as well as eutectic Si, and can change the growth mode of primary Si from non-faceted to faceted mode, as the amount of Sr increases larger than 0.04 wt.%, even though it cannot affect the grain size of primary Si, significantly. The EBSD analysis shows that the traction of ${\Sigma}3$ boundary(twin boundary) increases as the amount of Sr in the hypereutectic Al-Si alloys increase until the over-modification occurs at 1.6 wt.%Sr and proves that the change in growth mode of primary Si results from the change of TPRE growth to IIT growth.

High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys (자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

Establishments of Fabrication and Evaluation Methods for Innovative SiC Fiber Reinforced SiC Matrix Composites

  • Park, Joon-Soo;Kohyama, Akira;Hinoki, Tatsuya
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.21-24
    • /
    • 2006
  • Based on the improvement in reinforcing SiC fibers and the utilization of very fine nano-SiC powders, the well known liquid phase sintering (LPS) process was drastically improved to become a new process called the Nano Infiltration and Transient Eutectic Phase (NITE) Process. Laboratory scale NITE-SiC/SiC composites demonstrated excellent mechanical properties, thermal conductivity, hermeticity and microstructure stability which made them attractive for not only energy application but many other industrial applications. For the real deployments of these materials, mass production system and evaluation methods, together with the design code and safety assurance systems are essential. The current efforts to establish these bases were introduced.

  • PDF

Change of Secondary Dendrite Arm Spacing of Hypoeutectic Al-Si Alloys according to Si Content and Cooling Rate (아공정 Al-Si 합금에서 Si 함량과 냉각속도에 따른 제이차수지상간격의 변화)

  • Park, Kyeong-Seob;Kim, Hee-Soo
    • Journal of Korea Foundry Society
    • /
    • v.37 no.4
    • /
    • pp.108-114
    • /
    • 2017
  • In this study, we investigated the effect of the Si content on the secondary dendrite arm spacing (SDAS) of hypoeutectic Al-Si binary alloys in the range of 4~10 wt% Si. Cooling curves were measured during the solidification of the alloy cast in a step-wise mold. We compared two kinds of solidification time: the first is the total solidification time for both dendritic and eutectic growth, and the second is the solidification time for only dendritic growth. The proportional constant in the relationship between SDAS and cooling rate was estimated, as this constant represents the stability of the cast microstructure. The proportional constant decreased with the Si contents from 4 wt% to 8 wt%, and it remains relatively uniform with up to 10 wt% of Si.

A Study of Cadmium Recovery from LCC Crucible Using Solid-liquid Separation Method (고-액 분리법을 이용한 LCC 도가니에서의 카드뮴 회수에 관한 연구)

  • Park, Dae-Yeob;Kim, Tack-Jin;Kim, Jiyong;Kim, Kyung-Ryang;Kim, Si-Hyung;Shim, Joon-Bo;Peak, Seungwoo;Ahn, Do-Hee
    • Journal of Advanced Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.431-436
    • /
    • 2011
  • This study was carried out to reduce the problem during distillation process, which separate U, TRU (TRans Uranium) metal electro deposit, Cd and LiCl-KCl eutectic salt generating from LCC (Liquid Cadmium Cathode) electro winning process. The cadmium recovering apparatus was manufactured to separate for each metal using solid-liquid separation method. The apparatus consists of the first sieve for the separation of U and TRU metal electrodeposit, the second sieve for the separation of LiCl-KCl eutectic salt, cadmium collection basket, and a heating furnace. In addition, the size of each sieve is 2 mm to 3 mm. In this experiment, a metal wire was employed to replace TRU metal electrodeposit and U, which exist actually in a LCC crucible. In the solid state, The LiCl-KCl is separated at 340℃ at which the solid and the liquid of the remaining cadmium and LiCl-KCl eutectic salt coexists in each, after the metal wire separated at 500℃. As a result, it seems that it would be beneficial to set the processing condition in the distillation process with the additional treatment process of cadmium and LiCl-KCl eutectic salt.

A Study on the Squeeze Casting of Al-7.0Si-0.4Mg Alloy for Fuel System Parts (Al-7.0Si-0.4Mg 합금 자동차 연료계 부품의 스퀴즈 캐스팅에 관한 연구)

  • 김순호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.48-54
    • /
    • 2003
  • Alumium alloys casting are gaining increased acceptance in the automotive and electronic industeries and squeeze casting is the most efficient method of manufacturing such mass produced parts. This study has been investigated the microstructures and mechanical properties of Al-7.0Si-0.4Mg (AC4C) alloy fabricated by squeeze casting process for development of Fuel system Parts (Fuel rail). The microstructure of squeeze casted specimen were composed of eutectic structure Alumimim solid solution and $Mg_2$Si precipitates. The tensile strength of as-solid solution treatment Al-7.0Si-0.4Mg ahoy revealed 298.5MPa. It was found that Al-7.0Si-0.4Mg alloy have good corrosion resistance in electrochemical polarization test.

A study of crystallization of a-Si:H using a-Si:H/Cd interface layer (A-Si:H/Cd 계면층을 이용한 a-Si:H의 결정화 연구)

  • 김도영;최유신;임동건;김홍우;이수홍;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.529-532
    • /
    • 1997
  • We studied the crystallization of a-Si:H thin film. Multi-crystallized Si films are preferred in many applications such as FPD, solar cells, RAM, and integrated circuits. Because most of these applications require a low temperature process, we investigated a crystallization of a-Si:H using a Cd layer. A metal Cd shows an eutectic point at a temperature of 321$^{\circ}C$. This paper present Cd layer assisted crystallization of a-Si:H film for the various grain growth Parameters such as anneal temperature, Cd layer thickness, and anneal time

  • PDF

Effect of $Si_3N_4$ Addition on the Microstructure and PTCR Characteristics in Semiconducting $BaTiO_3$ Ceramics (반도성 $BaTiO_3$ 세라믹스의 미세구조 및 PTCR 특성에 미치는 $Si_3N_4$ 첨가효과)

  • 김준수;정윤해;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1089-1098
    • /
    • 1994
  • The effect of Si3N4 addition on the microstructure and PTCR characteristics of BaTiO3 was studied. When 0.1 mol% Sb2O3-doped BaTiO3 codoped with Si3N4 (0.1, 0.25, 0.5, 0.75, and 1 wt%, respectively) were sintered, their microstructures were changed by the amount of the liquid phase as a result of eutectic reaction at 126$0^{\circ}C$. By these microstructural changes, the specific resistivity ratio($\rho$max/$\rho$min) with Si3N4 content variation of 0.1 mol% Sb2O3-doped BaTiO3 ceramics sintered at 130$0^{\circ}C$ for 1 hour varied between 3.70$\times$102(0.1 wt% Si3N4) to 1.16$\times$103 (1wt% Si3N4).

  • PDF