• Title/Summary/Keyword: eutectic

Search Result 747, Processing Time 0.023 seconds

High Optical Anisotropy Nematic Single Compounds and Mixtures

  • Gauza, Sebastian;Kula, Przemyslaw;Dabrowski, Roman;Sasnouski, Genadz;Lapanik, Valeri
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.2-5
    • /
    • 2012
  • We have designed, synthesized, and evaluated the physical properties of some high birefringence (${\Delta}n$) isothiocyanato biphenyl-bistolane liquid crystals. These compounds exhibit ${\Delta}n^-$ 0.4-0.7 at room temperature and wavelength $\lambda$=633 nm. Laterally substituted short alkyl chains and fluorine atom eliminate smectic phase and lower the melting temperature. The moderate melting temperature and very high clearing temperature make those compounds attractive for eutectic mixture formulation. Several mixtures based on those compounds were formulated and its physical properties evaluated.

The Effects of Sc on the Microstructures of Hypereutectic Al-Si Alloys (과공정 Al-Si 합금의 미세조직에 미치는 Sc의 영향)

  • Jeong Y. S.;Kim M. H.;Choi S. H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.480-485
    • /
    • 2005
  • Sc has been known to be an very effective ppt-hardening element in Al and Al alloys and also to be effective in modification of eutectic Si in hypoeutectic Al-Si alloys. The modification mechanism of Sc is different from that of the traditional modifier Sr in Al-Si alloys. In the present study the effects of Sc on the primary and eutectic Si in hypereutectic Al-Si alloys were investigated with evaluating the microstructures with OM, EPMA and EBSD methods. The results represent that Sc has only a small effect on primary Si when added less than $0.8wt\%$. However, when Sc addition leading to the precipitation of metallic Sc within primary Si reaches $1.6wt\%$, very coarse primary Si occurs.

Thermotropic Compounds with Two Terminal Mesogenic Units and a Central Spacer, 8. Mutual Miscibility between the Dimesogenic, Nematic Compounds

  • Jin, Jung-Il;Choi, E-Joon;Park, Joo-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.353-357
    • /
    • 1986
  • Mutual miscibility between thermotropic, nematic compounds with two terminal mesogenic units and a central spacer was studied by differential scanning calorimetry (DSC) and on a polarizing microscope. It was found that the isomorphous, nematic dimesogenic compounds with wide variety of structures are miscible in mesophases with each other over the whole range of composition and that Schroder-van Laar equation almost correctly predicts the melting temperature and composition of eutectic mixtures. There was a pair of compounds which were exceptional and did not form a eutectic mixture and, instead, revealed a monotonous change in melting (T$_{m}$) and isotropic transition temperatures (T$_{i}$) as the composition of the mixture was varied. The compounds were of almost same structure in shape and seemed to undergo formation of solid solution.

Fracture simulation of SFR metallic fuel pin using finite element damage analysis method

  • Jung, Hyun-Woo;Song, Hyun-Kyu;Kim, Yun-Jae;Jerng, Dong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.932-941
    • /
    • 2021
  • This paper suggests a fracture simulation method for SFR metallic fuel pin under accident condition. Two major failure mechanisms - creep damage and eutectic penetration - are implemented in the suggested method. To simulate damaged element, stress-reduction concept to reduce stiffness of the damaged element is applied. Using the proposed method, the failure size of cladding can be predicted in addition to the failure time and failure site. To verify the suggested method, Whole-pin furnace (WPF) test and TREAT-M test conducted at Argonne National Laboratory (ANL) are simulated. In all cases, predicted results and experimental results are overall in good agreement. Based on the simulation result, the effect of eutectic-penetration depth representing failure behavior on failure size is studied.

Cesium and strontium recovery from LiCl-KCl eutectic salt using electrolysis with liquid cathode

  • Jang, Junhyuk;Lee, Minsoo;Kim, Gha-Young;Jeon, Sang-Chae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3957-3961
    • /
    • 2022
  • Deposition behaviors of Sr and Cs in various liquid cathodes, such as Zn, Bi, Cd, and Pb, were examined to evaluate their recovery from LiCl-KCl eutectic salt. Cations in the salt were deposited on the liquid cathode, exhibiting potential of -1.8 to -2.1 V (vs. Ag/AgCl). Zn cathode had successful deposition of Sr and exhibited the highest recovery efficiency, up to 55%. Meanwhile, the other liquid cathodes showed low current efficiencies, below 18%, indicating LiCl-KCl salt decomposition. Sr was recovered from the Zn cathode as irregular rectangular SrZn13 particles. A negligible amount of Cs was deposited on the entire liquid cathode, indicating that Cs was hardly deposited on liquid cathodes. Based on these results, we propose that liquid Zn cathode can be used for cleaning Sr in LiCl-KCl salt.

Effect of Sc Addition on the Microstructure Modification of Al-6Si-2Cu Alloy (Sc 첨가에 따른 Al-6Si-2Cu 합금의 미세조직 개량화)

  • An, Seongbin;Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.3
    • /
    • pp.150-158
    • /
    • 2022
  • The effects of scandium addition on the Al-6Si-2Cu Alloy were investigated. The Al-6Si-2Cu-Sc alloy was prepared by gravity die casting process. In this study, scandium was added at 0.2 wt%, 0.4 wt%, 0.8 wt%, and 1.0 wt%. The microstructure of Al-6Si-2Cu-Sc alloy was investigated using Optical Microscope, Field Emission Scanning Electron Microscope, Electron Back Scatter Diffraction, and Transmission Electron microscope. The microstructure of Al-6Si-2Cu alloy with scandium added changed from dendrite structure to equiaxed crystal structure in specimens of 0.4 wt% Sc or more, and coarse needle-shape eutectic Si and β-Al5FeSi phases were segmented and refined. The nanosized Al3Sc intermetallic compound was observed to be uniformly distributed in the modified Al matrix.