Browse > Article
http://dx.doi.org/10.1016/j.net.2020.08.009

Fracture simulation of SFR metallic fuel pin using finite element damage analysis method  

Jung, Hyun-Woo (Korea University, Department of Mechanical Engineering)
Song, Hyun-Kyu (Korea University, Department of Mechanical Engineering)
Kim, Yun-Jae (Korea University, Department of Mechanical Engineering)
Jerng, Dong-Wook (Chung-ang University, Department of Energy Systems Engineering)
Publication Information
Nuclear Engineering and Technology / v.53, no.3, 2021 , pp. 932-941 More about this Journal
Abstract
This paper suggests a fracture simulation method for SFR metallic fuel pin under accident condition. Two major failure mechanisms - creep damage and eutectic penetration - are implemented in the suggested method. To simulate damaged element, stress-reduction concept to reduce stiffness of the damaged element is applied. Using the proposed method, the failure size of cladding can be predicted in addition to the failure time and failure site. To verify the suggested method, Whole-pin furnace (WPF) test and TREAT-M test conducted at Argonne National Laboratory (ANL) are simulated. In all cases, predicted results and experimental results are overall in good agreement. Based on the simulation result, the effect of eutectic-penetration depth representing failure behavior on failure size is studied.
Keywords
Sodium-cooled fast reactor; Metallic fuel; Fracture simulation; Failure prediction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Tsai, Fuel/cladding Compatibility in Irradiated Metallic Fuel Pins at Elevated Temperatures. in: Proceedings of ANS Topical Meeting on Fast Reactor Safety 257, Snowbird, USA, August 12-16, 1990.
2 Y.Y. Liu, H.C. Tsai, D.A. Donahue, D.O. Pushis, F.E. Savoie, J.W. Holland, A.E. Wright, C. August, J.L. Bailey, D.R. Patterson, Whole-pin furnace system: an experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions, in: Proceedings of ANS Topical Meeting on Fast Reactor Safety 491, Snowbird, USA, August 12-16, 1990.
3 K.J. Miles Jr., A.M. Tentner, Metal Fuel Safety Performance, No. CONF-880506- 18, Argonne National Lab, Argonne, USA, 1988.
4 A.M. Tentner, E. Parma, T. Wei, R. Wigeland, Severe Accident Approach - Final Report. Evaluation of Design Measures for Severe Accident Prevention and Consequence Mitigation, No. ANL-GENIV-128, Argonne National Laboratory, Argonne, USA, 2010, https://doi.org/10.2172/973483.
5 T.H. Bauer, A.E. Wright, W.R. Robinson, J.W. Holland, E.A. Rhodes, Behavior of modern metallic fuel in treat transient overpower tests, Nucl. Tech. 92 (3) (1990) 325-352, https://doi.org/10.13182/NT92-325.   DOI
6 M.H. Lee, H. Hyo, I.C. Bang, D.W. Jerng, Effect of rupture size in Ex-pin phenomena of severe accident in SFR, in: Proceedings of 2017 International Congress on Advances in Nuclear Power Plants, Fukui and Kyoto, Japan, April 24-28, 2017.
7 T. Sofu, J.M. Kramer, The SAS4A/SASSYS-1 Safety Analysis Code System, Chapter 11: FPIN2 Pre-failure Metal Fuel Pin Behavior Model, No. ANL/NE-16/19, Argonne National Laboratory, Argonne, USA, 2017.
8 A. Biancheria, T.S. Roth, B.E. Sundquist, Steady-state and transient fuel performance modelling: LIFE-4 update, in: Proceedings of International Conference on Reliable Fuels for Liquid Metal Reactors 5.1-5.14, Tucson, USA, September 7-11, 1986.
9 Dassault Systems, Abaqus Version 2016 Manual, Velizy-Villacoublay, France, 2015.
10 J.M. Kramer, Y.Y. Liu, M.C. Billone, H.C. Tsai, Modeling the behavior of metallic fast reactor fuels during extended transients, J. Nucl. Mater. 204 (1993) 203-211, https://doi.org/10.1016/0022-3115(93)90218-N.   DOI
11 J.E. Cahalan, J.M. Kramer, J.F. Marchaterre, C.J. Mueller, D.R. Pedersen, R.H. Sevy, D.C. Wade, T.Y.C. Wei, Integral Fast Reactor Safety Features, No. CONF-880506-12, Argonne National Laboratory, Argonne, USA, 1988.
12 L. Leibowitz, R.A. Blomquist, Thermal conductivity and thermal expansion of stainless steels D9 and HT9, Int. J. Thermophys. 9 (5) (1988) 873-883, https://doi.org/10.1007/BF00503252.   DOI
13 T. Kobayashi, M. Kinoshita, S. Hattori, T. Ogawa, Y. Tsuboi, M. Ishida, S. Ogawa, H. Saito, Development of the SESAME metallic fuel performance code, Nucl. Tech. 89 (2) (1990) 183-193, https://doi.org/10.13182/NT90-A34345.   DOI
14 W.R. Robinson, R.K. Lo, A.E. Wright, T.H. Bauer, G.S. Stanford, J.A. Morman, Integral fast reactor safety tests M2 and M3 in TREAT, in: Proceedings of ANS Winter Meeting, 50, November 10, 1985, pp. 352-353. San Francisco, USA.
15 N.E. Toredas, M.S. Kazimi, Nuclear Systems: Thermal Hydraulic Fundamentals, CRC press, Boca Raton, USA, 2012.
16 W.R. Robinson, T.H. Bauer, A.E. Wright, E.A. Rhodes, G.S. Stanford, A.E. Klickman, First TREAT transient overpower tests on U-Pu-Zr fuel:M5 and M6, Trans. Am. Nucl. Soc. 55 (1987) 418.
17 H. Heo, S.D. Park, D.W. Jerng, I.C. Bang, Visual study of ex-pin phenomena for SFR with metal fuel under initial phase of severe accidents by using simulants, J. Nucl. Sci. Technol. 53 (9) (2016) 1409-1416, https://doi.org/10.1080/00223131.2015.1120246.   DOI
18 M.H. Lee, H. Hyo, D.W. Jerng, I.C. Bang, Phenomenological study on the Ex-pin phenomenain theinitial phase of HCDA onmetal-fueled SFR using simulant, Ann. Nucl. Energy 130 (2019) 34-46, https://doi.org/10.1016/j.anucene.2019.02.024.   DOI
19 A. Karahan, Modeling of Thermos-Mechanical and Irradiation Behavior of Metallic and Oxide Fuels for Sodium Fast Reactors, Doctoral thesis, Massachusetts Institute of Technology, Cambridge, USA, 2009.
20 Y.Y. Liu, H.C. Tsai, M.C. Billone, J.W. Holland, J.M. Kramer, Behavior of EBR-II Mk-V-type fuel elements in simulated loss-of-flow tests, J. Nucl. Mater. 204 (1993) 194-202, https://doi.org/10.1016/0022-3115(93)90217-M.   DOI
21 J.K. Fink, L. Leibowitz, Thermodynamic and Transport Properties of Sodium Liquid and Vapor, No. ANL/RE-95/2, Argonne National Laboratory, Argonne, USA, 1995.
22 S. Sharafat, R. Amodeo, N.M. Ghoniem, Materials Data Base and Design Equations for the UCLA Solid Breeder Blanket, No. UCLA-ENG-8611/PPG-937, California University, Los Angenles, USA, 1986.
23 J.M. Kramer, R.J. Dimelfi, Modeling deformation and failure of fast reactor cladding during simulated accident transients, Nucl. Eng. Des. 63 (1) (1981) 47-54, https://doi.org/10.1016/0029-5493(81)90016-9.   DOI
24 R.J. Dimelfi, J.M. Kramer, Modeling the effects of fast-neutron irradiation of the subsequent mechanical behavior of type 316 stainless steel, J. Nucl. Mater. 89 (1980) 338-346, https://doi.org/10.1016/0022-3115(80)90065-3.   DOI
25 N. Yamanouchi, M. Tamura, H. Hayakawa, A. Hishinuma, T. Kondo, Accumulation of engineering data for practical use of reduced activation ferritic steel: 8%Cr-56-2%W-0.2%V-0.04%Ta-Fe, J. Nucl. Mater. 191 (1992) 822-826, https://doi.org/10.1016/0022-3115(92)90587-B.   DOI
26 A. Banerjee, S. Raju, R. Divakar, E. Mohands, High temperature heat capacity of alloy D9 using drop calorimetry based enthalpy increment measurements, Int. J. Thermophys. 28 (1) (2007) 97-108, https://doi.org/10.1007/s10765-006-0136-0.   DOI
27 K.J. Miles, The SAS4A/SASSYS-1 Safety Analysis Code System. Chapter 9: DEFORM-5 Metallic Fuel Cladding Transient Behavior Model, No. ANL/NE-16/19, Argonne National Laboratory, Argonne, USA, 2017.
28 H.W. Ryu, K.D. Bae, Y.J. Kim, J.J. Han, J.S. Kim, P.J. Budden, Ductile tearing simulation of Battelle pipe test using simplified stress-modified fracture strain concept, Fatig. Fract. Eng. Mater. Struct. 39 (2016) 1391-1406, https://doi.org/10.1111/ffe.12456.   DOI
29 Bj Makenas, Swelling of 316 Stainless Steel and D9 Cladding in FFTF, No. ASTM-Stp33814s, American Society for Testing and Materials, Philadelphia, USA, 1987, https://doi.org/10.1520/STP33814S.
30 T.H. Bauer, G.R. Fenske, J.M. Kramer, Cladding failure margins for metallic fuel in the integral fast reactor, in: Proceedings of International Conference on Structural Mechanics in Reactor Technology, August 17, 1987. Lausanne, Switzerland.
31 T. Ogata, T. Yokoo, Development and validation of ALFUS: an irradiation behavior analysis code for metallic fast reactor fuels, Nucl. Technol. 128 (1) (1999) 113-123, https://doi.org/10.13182/NT99-A3018.   DOI
32 A.B. Cohen, H. Tsai, L.A. Neimark, Fuel/cladding compatibility in U-19Pu-10Zr/HT9-clad fuel at elevated temperatures, J. Nucl. Mater. 204 (1993) 244-251, https://doi.org/10.1016/0022-3115(93)90223-L.   DOI
33 N.H. Kim, C.S. Oh, Y.J. Kim, C.M. Davies, K. Nikbin, D.W. Dean, Creep failure simulations of 316H at 550℃: Part II - effects of specimen geometry and loading mode, Eng. Fract. Mech. 105 (2013) 169-181, https://doi.org/10.1016/j.engfracmech.2013.04.001.   DOI