• Title/Summary/Keyword: ethylene release

Search Result 96, Processing Time 0.029 seconds

Revelation of the Susceptibility of Microcapsule by the Control of Polymer Structure (II) -Preparation of polyurethane microcapsules with different chemical structures- (고분자구조제어에 의한 microcapsule의 감성기능발현(II) -화학구조에 따른 polyurethane microcapsule의 특성-)

  • Hong, Ki-Jeong;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.9 no.5
    • /
    • pp.63-74
    • /
    • 1997
  • Polyurethane microcapsules were synthesized by interfacial polymerization in an aqueous poly(ethylene glycol) dispersion with ethylenediamine as chain extender of toluene diisocyanate in perfume oil using poly(vinyl alcohol) as the stabilizing agent. The effect of chemical structure on the average particle size and distributions, morphologies, and thermal properties to design microcapsules for the sustained release system was investigated. It came to be known that polyurethane microcapsules with ethylene diamine as chain extender had a rounder, more permeable and controlled release membranes. And the release test of polyurethane microcapsules with different soft segment content was done to certify the effect of long methylene chain. According to the higher molecular weight of polyether polyol, the release rate of microencapsulated disperse dye molecular was faster.

  • PDF

Surfactant-Free Microspheres of Poly(${\varepsilon}-caprolactone$)/Poly(ethylene glycol)/Poly(${\varepsilon}-caprolactone$) Triblock Copolymers as a Protein Carrier

  • Sun, Sang-Wook;Jeong, Young-Il;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.26 no.6
    • /
    • pp.504-510
    • /
    • 2003
  • The aim of this study is to prepare biodegradable microspheres without the use of surfactants or emulsifiers for a novel sustained delivery carriers of protein drugs. A poly($\varepsilon$-caprolactone)/poly(ethylene glycol)/poly($\varepsilon$-caprolactone) (CEC) triblock copolymer was synthesized by the ring-opening of $\varepsilon$-caprolactone with dihydroxy poly (ethylene glycol) to prepare surfactant-free microspheres. When dichloromethane (DCM) or ethyl formate (EF) was used as a solvent, the formation of microspheres did not occur. Although the microspheres could be formed prior to lyophilization under certain conditions, the morphology of microspheres was not maintained during the filtration and lyophilization process. Surfactant-free microspheres were only formed when ethyl acetate (EA) was used as the organic solvent and showed good spherical micro-spheres although the surfaces appeared irregular. The content of the protein in the micro-sphere was lower than expected, probably because of the presence of water channels and pores. The protein release kinetics showed a burst release until 2 days and after that sustained release pattern was showed. Therefore, these observations indicated that the formation of microsphere without the use of surfactant is feasible, and, this the improved process, the protein is readily incorporated in the microsphere.

Combustive Properties of Ethylene-Propylene Die Monomer/Polypropylene/Clay Nanocomposites (에틸렌-프로필렌 디엔 단량체/폴리프로필렌/클레이 나노복합체의 연소성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.190-195
    • /
    • 2011
  • Effects of ethylene-propylene diene monomer (EPDM)/polypropylene (PP), zinc oxide, stearic acid, and clay on the combustive properties based on EPDM/PP were investigated. The EPDM/PP/clay nanocomposites was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). It was found that the combustive properties in the nanocomposites decreased due to the fire resistance compared with unfilld EDPM/PP. The nanocomposites showed the lower peak heat release rate (PHRR) than that of virgin EPDM/PP, while stearic acid for softening ruber increased the mean heat release rate (MHRR) by itself, combustible.

Norfloxacin-Incorporated Polymeric Micelle Composed of Poly(ε-caprolactone)/Poly(ethylene glycol) Diblock Copolymer (Norfloxacin이 담지된 Poly(ε-caprolactone)/Poly(ethylene glycol) 이중블록공중합체 미셀의 제조)

  • Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.137-143
    • /
    • 2009
  • We prepared norfloxacin (NFX)-incorporated polymeric micelle using poly ($\varepsilon$-caprolactone)/poly(ethylene glycol) (PCL/PEG, CE) diblock copolymers. Particle size was from 60 to 200 nm according to the PCL block length. Their critical association concentration (CAC) was decreased according to the increase of PCL block length. $^1H$-NMR study showed core-shell type micelle structures of CE diblock copolymers in the aqueous environment. Drug release from polymeric micelle was continued over 2 days. Duration of drug release was varied according to the PCL block length and drug contents. At antimicrobial activity test, polymeric micelle showed almost similar cytotoxicity compared to NFX itself.

Enhanced Controlled Transdermal Delivery of Hydrochlorothiazide from an Ethylene-vinyl Acetate Matrix

  • Kim, Dal-Keun;Park, Jung-Chan;Chang, Ik-Hyun;Kang, Chung;Ryu, Sang-Rok;Shin, Sang-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.3
    • /
    • pp.167-173
    • /
    • 2010
  • Repeated oral administration of hydrochlorothiazide, a loop diuretic, due to transient high blood levels, may cause adverse effects such as gastric disturbance, nausea, high blood sugar, and hyper lipidemia. Transdermal administration could avoid some of these systemic side effects and gastric disorders. We have developed a matrix using ethylene-vinyl acetate (EVA), a heat-processible and flexible material, for transdermal delivery of hydrochlorothiazide. Drug solubility was highest at 40% PEG-400 volume fraction. Drug release increased as concentration increased with a linear relationship between the release rate and the square root of loading dose. Increasing temperature increased drug release from the EVA matrix. The activation energy, measured from the slope of log P versus 1000/T, was 11.9 kcal/mol for a 2.5% loading dose from EVA matrix. Diethyl phthalate had the highest plasticizing effects on the release of hydrochlorothiazide. To increase the skin permeation of hydrochlorothiazide from the EVA matrix, enhancers such as the saturated fatty acids, the unsaturated fatty acids, and the non-ionic surfactants were added to the EVA matrix, and skin permeation was evaluated using a modified Keshary-Chien diffusion cell fitted with intact excised rat skin. Polyoxyethylene 23-lauryl ether showed the highest enhancing effects. In conclusion, transdermal delivery of hydrochlorothiazide could be improved from an EVA matrix containing plasticizer and permeation enhancer.

Preparation and Characterization of Biodegradable Poly($\varepsilon$-caprolactone)/ Poly(ethylene oxide) Microcapsules Containing Erythromycin (에리트로마이신을 함유한 생분해성 폴리카프로락톤/폴리(에틸렌 옥사이드) 마이크로캡슐의 제조 및 특성)

  • 박수진;김승학;이재락;이해방;홍성권
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.449-457
    • /
    • 2003
  • The purposes of this work were the producing of a biodegradable poly($\varepsilon$-caprolactone) (PCL) / poly(ethylene oxide) (PEO) microcapsule and the analyzing of form and features for the manufacturing conditions which could be observed in a prospective drug delivery systems through drug release. The effects of emulsifier, emulsifier concentration, and stirring rate for the diameter and form of the microcapsules were observed using image analyzer and scanning electron microscope. The role of interfacial adhesion between PCL/PEO and drug was determined by contact angle measurements, and the drug release test of the microcapsules was characterized by UV/vis. spectra. As a result, the microcapsules were made in spherical fonns with a mean particle size of 170 nm∼68 $\mu$m. And the work of adhesion between water and PCL/PEO increased with increasing the content of PEO, probably due to the increased the hydrophilicity. It was also found that the drug release rate from the microcapsules significantly increased with increasing the content of PEO, which could be also attributed to the increasing of the hydrophilic groups or the degree of adhesion force at interfaces.

Preparation and Characterization of pH-Sensitive Poly(ethylene oxide) Grafted Methacrylic Acid and Acrylic Acid Hydrogels by ${\gamma}-ray $ Irradiation

  • Lim, Youn-Mook;Lee, Young-Moo;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.327-333
    • /
    • 2005
  • pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with methacrylic acid (MAA) or acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by ${\gamma}-ray $ irradiation (radiation dose: 50 kGy, dose rate: 7.66 kGy/h), grafted by either MAA or AAc monomers onto the PEO hydrogels and finally underwent irradiation (radiation dose: 520 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. Drug-loaded hydrogels were placed in simulated gastric fluid (SGF, pH 1.2) for 2 hr and then in simulated intestinal fluid (SIF, pH 6.8). The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV-Vis spectrophotometer.

Characterizations and Release Behavior of Poly [(R)-3-hydroxy butyrate]-co-Methoxy Poly(ethylene glycol) with Various Block Ratios

  • Jeong, Kwan-Ho;Kwon, Seung-Ho;Kim, Young-Jin
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.418-423
    • /
    • 2008
  • Poly[(R)-3-hydroxy butyrate] (PHB) and methoxy poly(ethylene glycol) (mPEG) were conjugated by the transesterification reaction with tin(II)-ethylhexanoate (Sn(Oct)-II) as a catalyst. Hydrophobic PHB and hydrophilic mPEG formed an amphiphilic block copolymer which was formed with the self-assembled polymeric micelle in aqueous solution. In this study, we tried to determine the optimum ratio of hydrophobic/hydrophilic segments for controlled drug delivery. The particle size and shape of the polymeric micelle were measured by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Their size were 61-102 nm with various block ratios. Griseofulvin was loaded in the polymeric micelle as a hydrophobic model drug. The loading efficiency and release profile were measured by high performance liquid chromatography (HPLC). The model drug in our system was constantly released for 48 h.

Drug Release from Bioerodible Hydrogels Composed of $Poly-{\varepsilon}-Caprolactone/poly(Ethylene{\;}glycol)$ Macromer Semiinterpenhetrating Polymer Networks

  • Kim, Sung-Ho;Ha, Jeong-Hun;Jung, Yong-Jae;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.18-21
    • /
    • 1995
  • Poly(ethylene glycol)(PEG) macrocers teminated with acrylate groups and semi-interpenetrating polymer networks (IPNs) composed of poly-.epsilon.-capolactone(PCL) and PEG macromer were syntheswized with the aim of obtaining a bioerodible hydrogel that could be used to release drugs for implantable delivery system. Polymerization of PEG macromer resulted in the formation of cross-linked gels due to the multifunctionality of macromer. Non-crosslinked PCL chains were interpenetrated into the cross-linked three-dimensions networks of PEG. The IPNs, largw drug loading lower concentration of PEG macromer in the IPNs concentration and the higher molecular weight of PEG macromer. Also, 5-FU was more fast released than hydrocortisone to the increased water solubility.

  • PDF