• Title/Summary/Keyword: ethylene copolymer

Search Result 280, Processing Time 0.024 seconds

Preparation and PTC Characteristics of Poly(dimethylsiloxane) Modified EPDM/HDPE Composite (Poly(dimethylsiloxane) 변성 EPDM/HDPE 복합체의 제조와 PTC 특성)

  • Kang, Doo-Whan;Kim, Sung-Soo
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.353-358
    • /
    • 2008
  • Maleated ethylene-propylene-diene terpolymer (MEPDM) was prepared from solution polymerization of EPDM and maleic anhydride. MEPDM-grafted-poly (dimethylsiloxane) (PDMS) copolymer (MEPDM-g-PDMS) was prepared from copolymerization of MEPDM with $\alpha$,$\omega$-hydroxyl group terminated PDMS. The MEPDM-g-PDMS was compounded with HDPE and 4-ethoxybenzoic acid modified MWCNT at $180^{\circ}C$ and positive temperature coefficient (PCT) behavior of the MWCNT composite was investigated. Surface modification of MWCNT enabled it to be more uniformly dispersed in polymer matrix and decreased aggregation of particles. Electrical resistivity of the composite was abruptly increased at melting temperature and PTC intensity of 2.3 was obtained at 15% loading of surface modified CNT.

Migration Behavior of Fatty Materials into the Selected Plastic Film During Storage (저장 조건에서의 플라스틱 포장재와 지방산의 전이도 측정)

  • An, Duek-Jun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.8 no.2
    • /
    • pp.39-43
    • /
    • 2002
  • Increasing use of plastics in food packaging materials has led to the issue of food-plastic packaging materials's mutual interactions. Although the plastic packaging materials are generally considered as inert, migration and sorption of fatty materials are some of the problems associated with their use. So, this work investigated the compatibility of three structurally different polymers, polypropylene (PP), polyethyleneterephthalate (PET) and ethylene vinyl alcohol copolymer (EVOH) with some structurally different food fats. The main goal was to study the sorption of food fats by the plastic films and to see what extent mechanical properties of the plastic films was affected by plasticization effect due to sorption of fatty materials. PP, PET, and EVOH films was immersed in pure triglycerides, and then extracted with hexane and analyzed for the amounts of fat migrated. The sorbed films were also investigated for change in mechanical properties. Result showed that structural factor of the films and fatty materials plays important role in th migration process. The fat with the simplest structure are migrated more easily that the fat with more complex structure. However, structural effect of migration was varied according to degree of crystallinity and density of plastic films. In addition to that, polarity of plastic film was affected migration of fatty materials significantly. Additional research is needed to justify the reason why migration of fatty materials into the films was affected by polarity and structural integrity.

  • PDF

Reactive Compatibilization of Amorphous Poly-${\alpha}$-olefins/Amorphous Polyamide Blends (무정형 알파-올레핀 고분자/무정형 폴리아미드 블렌드의 반응 상용화)

  • Yun, Deok-Woo;Choi, Mi-Ju;Hwang, Kyu-Hee;Kim, Geon-Seok;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.490-495
    • /
    • 2009
  • The reactive compatibilization of amorphous poly-${\alpha}$-olefins (APAO)/amorphous polyamide (aPA) blends was carried out using two kinds of reactive compatibilizers such as maleated polypropylene and ethylene-glycidyl methacrylate-methyl acrylate copolymer. The grafting reaction rates between aPA and the compatibilizers were examined using FT-IR, SEM and rheometer. The effect of the reactive compatibilization on the mechanical property of the blends was investigated with a universal testing machine. The adhesion strength of the blends including a hydrocarbon tackifier resin, C9 was also measured.

Synthesis and Physical Properties of Biocompatible and Biodegradable Polypeptide Copolymers. (1) Synthesis of Poly(ethylene glycol) grafted Polypeptides (생체적합성과 생분해성을 갖는 Polypeptide Copolymer의 합성과 물성에 관한 연구. (1) 폴리에틸렌 글리콜을 그라프트시킨 폴리펩티드의 합성)

  • Gang, In Gyu;Gwon, Dae Ryong;Jo, Jong Su;Sung, Yong Kiel
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.197-202
    • /
    • 1990
  • Polyethylene glycol (PEG) grafted poly γ-benzyl L-glutamate (PBLG) were prepared from esterification or substitution reaction of PBLG with PEG having hydroxyl group at one end or primary amino groups at both ends. The viscosity of these polymer solution was decreased with decrease of polymer concentration. But in more dilute solution the viscosity was increased with decrease of polymer concentration. PEG-grafted PBLG polymers showed smaller water contact angles than PBLG homopolymer, and the water contact angles of the surface of PEG-grafted PBLG polymers were largely dropped by reacting with aminoethanol, resulting in hydrogel surfaces.

  • PDF

Characterization of Silica/EVOH Hybrid Coating Materials Prepared by Sol-Gel Method

  • Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.288-296
    • /
    • 2009
  • In this study, the silica-based hybrid material with high barrier property was prepared by incorporating ethylene-vinyl alcohol (EVOH) copolymer, which has been utilized as packaging materials due to its superior gas permeation resistance, during sol-gel process. In preparation of this EVOH/$SiO_2$ hybrid coating materials, the (3-glycidoxy-propyl)-trimethoxysilane (GPTMS) as a silane coupling agent was employed to promote interfacial adhesion between organic and inorganic phases. As confirmed from FT-IR analysis, the physical interaction between two phases was improved due to the increased hydrogen bonding, resulting in homogeneous microstructure with dispersion of nano-sized silica particles. However, depending on the range of content of added silane coupling agent (GPTMS), micro-phase separated microstructure in the hybrid could be observed due to insufficient interfacial attraction or possibility of polymerization reaction of epoxide ring in GPTMS. The oxygen barrier property of the mono-layer coated BOPP (biaxially oriented polypropylene) film was examined for the hybrids containing various GPTMS contents. Consequently, it is revealed that GPTMS should be used in an optimum level of content to produce the high barrier EVOH/$SiO_2$ hybrid material with an improved optical transparency and homogeneous phase morphology.

The Aggregation State and Hemolytic Activity of Nystatin (니스타틴의 응집 특성 및 용혈 활성)

  • Yu, Bong-G.
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • The aggregation behavior of nystatin (NYS) in the presence of pluronic F127, triblock copolymer of poly (ethylene oxide) (PEO) and poly (propylene oxide) (PPO), was measured and correlated with hemolytic activity. Antifungal activity was also studied using Saccharomyces cerevisiae as a model strain. The critical aggregation concentrations (CAC) of the drug were 50.1, 108.0, 134.2, 154.3, and $217.9\;{\mu}M$ at 0.1%, 0.5%, 1.0%, 1.5%, and 2.0% pluronic F127 solution, respectively. The levels of NYS required to start lysis of erythrocytes were about 80, 100, 125, 150, and $200\;{\mu}M$ at 0.1%, 0.5%, 1.0%, 1.5%, and 2.0% pluronic F127 solution, respectively. It was $50\;{\mu}M$ in the absence of the polymer. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) of NYS-pluronic F127 lyophilizate were same at $3\;{\mu}g/ml$, while MIC and MFC of pure NYS are $3\;{\mu}g/ml$ and $12\;{\mu}g/ml$, respectively. By modulating the aggregation behavior of NYS, pluronic F127 was able to reduce the toxicity of the drug without compromising the MIC and MFC.

  • PDF

Surface Modification of Polyurethane Using Sulfonated PEG Grafted Polyrotaxane for Improved Biocompatibility

  • Park Hyung Dal;Bae Jin Woo;Park Ki Dong;Ooya Tooru;Yui Nobuhiko;Jang Jun-Hyeog;Han Dong Keun;Shin Jung-Woog
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • Sulfonated poly(ethylene glycol) (PEG-$SO_{3}$) grafted polyrotaxanes (PRx-PEG-$SO_{3}$) were prepared in order to utilize the unique properties of PEG-$SO_{3}$ and the supramolecular structure of PRx, in which PEG-$SO_{3}$ grafted $\alpha$-cyclodextrins ($\alpha$-CDs) were threaded onto PEG segments in a PEG-b-poly(propylene glycol) (PPG)-b-PEG triblock copolymer (Pluronic) chain capped with bulky end groups. Some of the PRx-PEG-$SO_{3}$ demonstrated a higher anticoagulant activity in case of PRx-PEG-$SO_{3}$ (P 105), and compared with the control they showed a lower fibrinogen adsorption in PRx-PEG-$SO_{3}$ (F68) and a higher binding affinity with fibroblast growth factor. The obtained results suggested that polyrotaxane incorporated with PEG-$SO_{3}$ may be applicable to the surface modification of clinically used polymers, especially for blood/cell compatible medical devices.

Surface Active Properties and LCST Behavior of Oligo(propylene oxide-block-ethylene oxide) Allyl Ether Siloxane Surfactants in Aqueous Solution

  • Kim, Doo-Won;Lim, Chul-Hwan;Choi, Jae-Kon;Noh, Si-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1182-1188
    • /
    • 2004
  • Polydisperse oligo(PO-b-EO) allyl ether siloxane surfactants were synthesized by the hydrosilylation reaction of OMTS with Allyl-oligo(PO-b-EO) series. The surface tension of siloxane surfactants increased with increasing the EO chain length while it decreased with increasing the PO ratio. However, the sedimentation time of the aqueous solution showed opposite trend to the surface tension data. Both the surface tension and sedimentation time of the aqueous solution containing inorganic electrolyte gradually decreased as the content of inorganic electrolyte increased because of the surface arrangement of surfactant molecules. However, they increased with an increase of pH values due to the hydrolysis of the siloxane backbone. The $C_p$ values tended to increase with the increase in the EO chain length and decrease of the PO ratio. It seems that intermolecular interaction between PO/EO block copolymer and water affects the variation of transition temperature.

Study on the rheological properties of PP-SEBS/silicate composites (PP-SEBS/실리케이트 복합체의 유변학적 특성 연구)

  • Kim, Youn-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1988-1992
    • /
    • 2011
  • Polypropylene (PP)-SEBS/silicate composites with PP content of 35, 40, and 45wt% were fabricated by melt compounding at $200^{\circ}C$, using lab scale Brabender mixer. The content of silicate was fixed at 5wt%. The thermal properties of the PP-SEBS/silicate composites were investigated by differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). The melting temperature of PP-SEBS compound decreased up to $141^{\circ}C$ with SEBS content. TGA result indicates an increase in degradation temperature when the silicate was added in the PP-SEBS compound. The rheological properties of the compounds were measured by dynamic Rheometer. PP-SEBS/silicate composite indicates higher shear thinning and elastic property than PP-SEBS compound. Van Gurp-Palmen analysis was applied in order to certify an increase in elasticity.

Synthesis of New pH-Sensitive Amphiphilic Block Copolymers and Study for the Micellization Using a Fluorescence Probe

  • Kim, Kyung-Min;Choi, Song-Yee;Jeon, Hee-Jeong;Lee, Jae-Yeol;Choo, Dong-Joon;Kim, Jung-Ahn;Kang, Yong-Soo;Yoo, Hyun-Oh
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.169-177
    • /
    • 2008
  • This paper reports a facile synthesis of new water-soluble poly(ethylene oxide) (PEO)-based amphiphilic block copolymers showing pH sensitive phase transition behaviors. The copolymers were prepared by atom transfer radical polymerization (ATRP) of methacrylamide type of monomers carrying a sulfonamide group using a PEO-based macroinitiator and a Cu(I)Br/$Me_6TREN$ catalytic system in aqueous media. The resulting polymers were characterized by a combination of $^1H$-NMR, size exclusion chromatography, and UV/Visible spectrophotometeric analysis. The micellization of the block copolymers as a drug-loading mechanism in aqueous media using fluorescein salt was examined as a function of pH. The stable micelle formation and its loading efficacy suggest that the block copolymers can be used as precursors for drug-nanocontainers.