• Title/Summary/Keyword: ethylene copolymer

Search Result 280, Processing Time 0.025 seconds

Synthesis of Thermosensitive and Biodegradable Methoxy Poly(ethylene glycol)-Polycaprolactone and Methoxy Poly(ethylene glycol)-Poly(lactic acid) Block Copolymers (온도감응 및 생분해성 폴리에틸렌 글리콜-폴리카프로락톤과 폴리에틸렌 글리콜-폴리락타이드 공중합체의 합성)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.211-217
    • /
    • 2004
  • The sol to gel transition of aqueous solution of block copolymers consisting of methoxy poly (ethylene glycol) (MPEG) and biodegradable polyesters such as $\varepsilon$-caprolactone and L-lactide was investigated as a function of temperature. MPEG-PCL was prepared by ring opening polymerization of $\varepsilon$-caprolactone in the presence of HClㆍEt$_2$O as monomer activator at room temperature. Also, MPEG-PLLA was prepared by ring opening polymerization of L-lactide in the presence of stannous octoate at 115$^{\circ}C$. The properties of block copolymers were investigated by $^1$H-NMR, IR, and GPC as well as the observation of thermo sensitive phase transition in aqueous solution. As the hydrophobic block length increased, the sol to gel transition temperature increased and curve of that steepen to lower concentration. To confirm the gel formation at body temperature, we observed the formation of gel in the mice body after injection of 20 wt% aqueous solution of each block copolymer. After surging, we investigated the gelation in mice. The results obtained in this study confirmed the feasibility as biomaterials of injectable implantation for controlled release of drug and protein delivery.

Melt Rheology of Ethylene 1-Octene Copolymer Blends Synthesized by Ziegler-Natta and Metallocene Catalysts

  • Kim, Hak-Lim;Dipak Rana;Hanjin Kwag;Soonja Choe
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.34-43
    • /
    • 2000
  • The melt rheology of four binary blends of ethylene 1-octene copolymers (EOCs) which consist of one component by Ziegler-Natta and another by metallocene catalysts, was studied to elucidate miscibility in the melt by using torsion rheometer at 200$\^{C}$ and different shear rates. The four blend systems, designated into the FA+FM, SF+FM, RF+EN, and RF+PL blend, are divided and interpreted based on the melt index (MI), the density and the comonomer contents. The melt viscosity such asη', η", and η$\^$*/ is weight average value if the comonomer contents are similar, otherwise they show different manner. The experimental resole are analyzed based on the Cole-Cole plot of logη' uersus log η", the logarithmic plots of the dynamic storage modulus (G') versus the dynamic loss modulus (G") for various blend compositions, and the melt viscosity of 11', n", and f" as a function of blend compositions. As a cerise-quence, the FA+FM blend is miscible, but the SF+FM, RF+EN, and RF+PL blends are not in the melt. Thus miscibility of the blends studied in this communication is suggested to strongly influence by the comonomer contents rather than the density or the MI.

  • PDF

Poly(benzyl-L-histidine)-b-Poly(ethylene glycol) Micelle Engineered for Tumor Acidic pH-Targeting, in vitro Evaluation

  • Lee, Eun-Seong;Youn, Yu-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1539-1544
    • /
    • 2008
  • A polymeric micelle, based on the poly(benzyl-L-histidine)-b-poly(ethylene glycol) (polyBz-His-b-PEG) diblock copolymer, was designed as a tumor-specific targeting carrier. The micelles (particle size: 67-80 nm, critical micelle concentration (CMC); 2-3 $\mu$g/mL) were formed from the diafilteration method at pH 7.4, as a result of self-assembly of the polyBz-His block at the core and PEG block on the shell. Removing benzyl (Bz) group from polyBz-His block provided pH-sensitivity of the micellar core; the micelles were physically destabilized in the pH range of pH 7.4-5.5, depending on the content of the His group free from Bz group. The ionization of His group at a slightly acidic pH promoted the deformation of the interior core. These pHdependent physical changes of the micelles provide the mechanism for pH-triggering anticancer drug (e.g., doxorubicin: DOX) release from the micelle in response to the tumor’s extracellular pH range (pH 7.2-6.5).

Novel Hydroxy-terminated Copolyether-based Polyurethane system for Propellant Binder (새로운 폴리에테르 공중합체 디올(HTPE)을 사용한 추진제용 폴리우레탄 바인더)

  • Yoo Ho-Joon;Song Jong-Kwon;Lee Bum-Jae;Hwang Gab-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.229-232
    • /
    • 2006
  • Two novel synthetic route proposed for Hydro-Terminated Poly(EO-ran-THF) and tri-block(PEC-PTHF-PEG) copolymer by cationic ring-opening polymerization of tetrahydrofuran(THF) and ethylene oxide(EO) and just by polymerization of EO on poly-THF, respectively. Polyurethane was synthesized from random and tri-block HTPE using N-100/IPDI mixture as curing agent, and TPB(Triphenylbismuth) as catalyst. The mechanical properties of resultant polyurethane after mixing with various ratio of isocyanate was also investigated. Finally, the post treatment process of HTPE based on amount of catalyst used in the synthesis was studied, to evaluate the optimum curing condition for the polyurethane propellant binder.

  • PDF

Higher Order Polymer Architectures Containing Ethylene and Functionalized Comonomers

  • Bazan, Guillermo;Diamanti, Steve;Coffin, Robert;Hotta, Atsushi;Khanna, Vikram;Fredrickson, Glenn;Kramer, Ed
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.156-157
    • /
    • 2006
  • Quasi-living polymerization conditions for the copolymerization of ethylene and functionalized norbornenes can be achieved by using an initiator system comprising $[N-(2,6-diisopropylphenyl)-2-(2,6-diisopropylphenylimino)-propanamidato-{\kappa}^2N,O]Ni({\Box}^1-CH_2Ph)(PMe_3)\;and\;Ni(COD)_2$. It is possible with this polymerization system to obtain block-copolymer and tapered structures. The latter form microdomains similar to those of standard block co-polymers. The mechanism of the reaction will also be discussed.

  • PDF

Thermal Properties of Poly(trimethylene terephthalate)/ Poly(ethylene terephthalate) Melt Blends

  • Son, Tae Won;Kim, Kwang Il;Kim, Nam Hun;Jeong, Min Gi;Kim, Young Hun
    • Fibers and Polymers
    • /
    • v.4 no.1
    • /
    • pp.20-26
    • /
    • 2003
  • The thermal behavior, morphology, ester-interchange reaction of Poly(trimethylene terephthalate) (PTT)/poly(ethylene terephthalate) (PET) melt blends were investigated over the whole composition range(xPTT/(1-x)PET) using a twinscrew Brabender. The melt blends were analyzed by differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy ($^{13}{C-NMR}$), and scanning electron microscopy (SEM). Single glass transition temperature ($T_g$) and cold crystallization temperature ($T_cc$) were observed in all melt blends. Melt blends were found to be due to the ester-interchange reaction in PTT/PET blend. Also the randomness of copolymer increases because transesterification between PT and PET increases with increasing blending time This reaction increases homogeneity of the blends and decreases the degree of crystallinity of the melt blends. In PTT-rich blends, mechanical properties decrease with increase of PET content compared with that of pure PTT. And, in PET-rich blends, tensile modulus decreases with increase of PTT content, but tensile strength and elongation is similar to that of pure PET.

Application of Composites Composed of Phosphoric Acid-Doped Silica Gel and Styrene-Ethylene-Butylene-Styrene Elastomer to Electric Double-Layer Capacitors

  • Matsuda, Atsunori;Honjo, Hiroshi;Hirata, Kazuki;Tatsumisago, Masahiro;Minami, Tsutomu
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.353-356
    • /
    • 1999
  • Highly proten-conductive elastic composites have been successfully prepared from $H_3PO_4$-doped silica gel and styrene-ethylene-butylene-styrene block elastic copolymer. In addition solid state electric double-layer capacitors have been fabricated using the composite as an electrolyte and activated carbon powders(ACP) hybridized with the composite as a polrizable electrode. The cyclic voltammogram of the electric double-layer capacitor fabricated demonstrated that electric charge was stored in the elecric double-layer at the interface between the polarizable electrode and the electrolyte. The value of capacitance of the capacitor was 10 F/(gram of total ACP), which was comparable to that of the capacitors using conventional liquid electrolytes.

  • PDF

Effects of poly (ethylene glycol-propylene glycol) copolymer on hemostasis and osteogenesis in a rat calvarial defect model

  • Kim, Ha-Eun;Yoon, Hun-Young;Kim, Eun-Jin;Kim, Sun-Jong
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.3
    • /
    • pp.145-153
    • /
    • 2020
  • This study aimed to evaluate the effects of a bioabsorbable bone hemostatic agent comprising poly (ethylene glycol-propylene glycol) copolymers (PEG-PPG) on hemostasis and osteogenesis. Bilateral 3 mm diameter calvarial defects were created in 99 male Sprague-Dawley rats. The defects were filled with PEG-PPG or bone wax. The defects of control group were left unfilled. Virtual autopsy was performed to evaluate bioabsorption. The calvaria were subjected to x-ray microtomography (microCT) and histological examination. Bone volume fraction (BV/TV) and bone mineral density (BMD) were measured using microCT; furthermore, white blood cell count and histological examination were performed. After application of PEG-PPG and bone wax, immediate hemostasis was achieved. Autopsy revealed that PEG-PPG disappeared within 48 h at the application site; in contrast, bone wax remained until 12 weeks. The PEG-PPG and control groups showed significantly more osteogenesis than the bone wax group with respect to BV/TV and BMD at 3, 6, and 12 weeks (p < 0.05). Histology revealed that the bone wax group exhibited little bone formation with inflammation. In contrast, PEG-PPG and control groups showed significantly more qualitative osteogenesis than the bone wax group (p < 0.01). In conclusion, PEG-PPG showed immediate hemostasis and was absorbed to allow progressive osteogenesis.

Preparation and Characterization of Nanoparticles Using Poly(N-isopropylacrylamide)-$Poly({\varepsilon}-caprolactone)$ and Poly(ethylene glycol)-$Poly({\varepsilon}-caprolactone)$ Block Copolymers with Thermosensitive Function

  • Choi, Chang-Yong;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.623-632
    • /
    • 2007
  • Thermosensitive nanoparticles were prepared via the self-assembly of two different $poly({\varepsilon}-caprolactone)$-based block copolymers of poly(N-isopropylacrylamide)-b-$poly({\varepsilon}-caprolactone)$ (PNPCL) and poly(ethylene glycol)-b-$poly({\varepsilon}-caprolactone)$ (PEGCL). The self-aggregation and thermosensitive behaviors of the mixed nanoparticles were investigated using $^1H-NMR$, turbidimetry, differential scanning microcalorimetry (micro-DSC), dynamic light scattering (DLS), and fluorescence spectroscopy. The copolymer mixtures (mixed nanoparticles, M1-M5, with different PNPCL content) formed nano-sized self-aggregates in an aqueous environment via the intra- and/or intermolecular association of hydrophobic PCL chains. The microscopic investigation of the mixed nanoparticles showed that the critical aggregation concentration (cac), the partition equilibrium constants $(K_v)$ of pyrene, and the aggregation number of PCL chains per one hydrophobic microdomain varied in accordance with the compositions of the mixed nanoparticles. Furthermore, the PNPCL harboring mixed nanoparticles evidenced phase transition behavior, originated by coil to the globule transition of PNiPAAm block upon heating, thereby resulting in the turbidity change, endothermic heat exchange, and particle size reduction upon heating. The drug release tests showed that the formation of the thermosensitive hydrogel layer enhanced the sustained drug release patterns by functioning as an additional diffusion barrier.

A Polymeric Micellar Carrier for the Solubilization of Biphenyl Dimethyl Dicarboxylate

  • Chi, Sang-Cheol;Yeom, Dae-Il;Kim, Sung-Chul;Park, Eun-Seok
    • Archives of Pharmacal Research
    • /
    • v.26 no.2
    • /
    • pp.173-181
    • /
    • 2003
  • A polymeric micelle drug delivery system was developed to enhance the solubility of poorly-water soluble drug, biphenyl dimethyl dicarboxylate, DDB. The block copolymers consisting of poly(D,L-lactide) (PLA) as the hydrophobic segment and methoxy poly(ethylene glycol) (mPEG) as the hydrophilic segment were synthesized and characterized by NMR, DSC and MALDI-TOF mass spectroscopy. The size of the polymeric micelles measured by dynamic light scattering showed a narrow monodisperse size distribution with the average diameter less than 50 nm. The MW of mPEG-PLA, 3000 (MW of mPEG, 2 K; MW of PLA, 1K), and the presence of hydrophilic and hydrophobic segments on the polymeric micelles were confirmed by MALDI-TOF mass spectroscopy and NMR, respectively. Polymeric micelle solutions of DDB were prepared by three different methods, i.e. the matrix method, emulsion method and dialysis method. In the matrix method, DDB solubility was reached to 13.29 mg/mL. The mPEG-PLA 2K-1K micelle system was compared with the poloxamer 407 micelle system for their critical micelle concentration, micelle size, solubilizing capacity, stability in dilution and physical state. DDB loaded-polymeric micelles prepared by the matrix method showed a significantly increased aqueous solubility (>5000 fold over intrinsic solubility) and were found to be superior to the poloxamer 407 micelles as a drug carrier.