• Title/Summary/Keyword: ethylene contents

Search Result 210, Processing Time 0.029 seconds

Morphological Properties of Binary Blends of Polyolefins Synthesized by Metallocene and Ziegler-Natta Catalysts (Ziegler-Natta와 메탈로센 촉매로 합성된 폴리올레핀 2원 블렌드의 상 형태학)

  • Kwag, Hanjin;Kim, Hak Lim;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.944-948
    • /
    • 1999
  • The morphological properties of four binary blends of polyethylene synthesized by metallocene catalyst(MCPE) and four polyolefins prepared by Ziegler-Natta catalyst have been investigated to interpret the effect of micro-molecular structure on the phase morphology and interfacial behavior; four binary blend systems studied are high density polyethylene(HDPE)-metallocene polyethylene (MCPE), polypropylene(PP)-MCPE, poly(propylene-co-ethylene) (CoPP)-MCPE, and poly(propylene-co-ethylene-co-1-butylene) (TerPP)-MCPE, and they are all phase separated. The HDPE-MCPE blend shows evenly growing homogeneous HDPE domain on the continuous MCPE phase, on the other hand, the rest of three blends show complex heterogeneous phase behavior. The PP-MCPE blend shows that PP and MCPE and completely phase separated and phase inversion takes place at 50% MCPE. The CoPP-MCPE and TerPP-MCPE show enhanced interface due to the same micro-molecular structure of ethylene, and phase inversion takes place at 40% MCPE. In particular, TerPP-MCPE blend shows improved phase morphology between interfaces, and this may be arisen from the comonomer contents in TerPP, which are 1-butene and ethylene having the same chemical structure as that of MCPE. The enhancement of the phase morphology in the TerPP-MCPE blend is correlated with the mechanical and morphological properties. Thus, although the four blend systems are phase separated, the phase morphology suggests that the order of interfacial adhesion strength be HDPE-MCPE > TerPP-MCPE > CoPP-MCPE > PP-MCPE and that micro-molecular structure between constituents be one of major factors giving enhanced interfacial adhesion.

  • PDF

Effect of Acid Rain on Vegetation (산성(酸性)비가 식생(植生)에 미치는 영향(影響))

  • Lee, Jong-Sik;Kim, Bok-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.346-358
    • /
    • 1994
  • In this paper, the current knowledge on the formation of acid rain and its effect on vegetation are reviewed. The pollutants which were emitted into the air are oxidized by photochemical reaction and affect the vegetation by dry and wet deposition. Acid rain at pH 4.0 affected sensitive plants and when it was below pH 3.0, visible symptoms developed in most of the crops. The acid rain treatment at pH 2.0 decreased dry weight, leaf area and chlorophyll contents in soybean but it increased rate of photosynthesis and respiration rate. Rain treatment at pH 2.8 increased ethylene production, but it’s not a suitable indicator of sensitivity to acid rain. At pH 2.0 treatment, the contents of soluble Mn and Al were increased but the cultivated soil pH at upper layer(0-5cm) was significantly decreased. The pertubation of glandular trichome which is existed along the vein was developed at all treatment except the control(pH 6.0) and non-treatment. Histological pertubation of spiked trichome and disintegration of chloroplast were developed only on the leaves of sesame treated with SAR(simulated acid rain) of pH 2.0.

  • PDF

Cure Characteristics of Foaming EVA Compounds: Influence of EVA Types and Cure Systems

  • Choi, Sung-Seen;Bae, Jong Woo;Kim, Jung-Soo;Han, Dong-Hun
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.212-217
    • /
    • 2016
  • Influence of poly(ethylene-co-vinyl acetate) (EVA) types and cure systems on cure characteristics of foaming EVA compounds were investigated. Three kind EVAs with different VA contents were employed. Influence of triallyl cyanurate (TAC) and dicumylperoxide (DCP) content on the cure characteristics were examined. The minimum torque ($T_{min}$) and delta torque (${\Delta}T$) decreased as the VA content increased. The ${\Delta}T$ was increased by adding TAC and by increasing the DCP content. For the foaming EVA compounds without TAC, the cure times such as the minimum cure time ($t_{min}$), scorch time ($t_2$), and optimal cure time ($t_{90}$) did not show a specific trend according to the DCP contents. For the foaming EVA compounds containing TAC, the cure times decreased as the DCP content increased. From the experimental results, it was found that efficienct DCP/TAC ratio for improvement of the crosslink density was 1.1~2.0.

BIO-GREEN' FUNCTIONAL WATER SUPPLY INFLUENCES MINERAL UPTAKE AND FRUIT QUALITILE IN 'TSUGARU' APPLES (바이오 그린' 기능수 처리가 사과 '쓰가루' 품종의 무기성분 흡수와 과실품질에 미치는 영향)

  • Kim, Wol-Soo;Chung, Soon-Ju
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1997.05a
    • /
    • pp.23-27
    • /
    • 1997
  • Bio-Green(B.G.) functional water was manufactured by Kyungwon Enterprise Co. through a series of processes ; water longrightarrow ultra-purification longrightarrow adding catalysts longrightarrow energy imprinting fermenting with energized water + zeolite and others + photosynthetic bacteria in fermenter longrightarrow filtering. Control(0), 5 or 10 liters of B.G. functional water were supplied to the orchard soil under canopy of 10 year old 'Tsugaru'/M26 apple trees on March 20, May 20 and June 20, 1995, respectively. Some orchard soil characteristics, not only pH, but also Ca and Mg of exchangeable cations were increased by supply with B.G. functional water. However, P$_2$O$_{5}$, K, and B contents were not influenced by the treatment. At harvest time soluble solid content of flesh and anthocyanin of fruit skin were increased by the treatment. B.G. functional water treatment showed higher root activities, and photosynthesis of leaves than that of control. Also B.G. functional water treatment showed higher Ca content in fruit skin and flesh tissues, whereas not affected N, K, and Mg contents. During storage at 4$^{\circ}C$ cold room, the more volume of B.G. functional water supply showed lower bitter pit symptom. Respiration and ethylene evolution in fruit were decreased, while fruit firmness increased by the treatment during storage.e.

  • PDF

A Study on the Functionality and Stability of LDPE-Nano ZnO Composite Film (LDPE-나노 ZnO 복합필름의 기능성 및 재질안정성 평가)

  • Lee, Wooseok;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • In this work, nano ZnO was introduced into low density poly ethylene (LDPE) composites films with various contents (0, 0.5, 1.0, 3.0 and 5.0 wt%) by melt-extrusion. Their basic properties such as crystallinity, chemical bonds and surface morphology were examined by XRD, FTIR and SEM. XRD patterns and FTIR peaks intensity were increased in proportion to the ZnO contents. SEM images showed well dispersed nano ZnO in LDPE composite films. Antimicrobial functionality of LDPE-nano ZnO composite films was also studied and the presence of nano ZnO resulted in significant improvement of antimicrobial functionality compared to the pure LDPE film. To evaluate influence of nano ZnO on LDPE properties required as packaging material, thermal, mechanical, gas barrier and optical properties of LDPE-nano ZnO composite films were characterized with various analytical techniques including TGA, UTM, OTR, WVTR and UV-Vis spectroscopy. As a result, except optical and mechanical properties of LDPE, no significant effects were found in other properties. Opacity of pure LDPE was greatly increased with increasing concentration of nano ZnO and tensile strength was also improved at 0.5wt% ZnO content.

Synthesis and Properties of Water Dispersion Polyurethane Containing Fluorine (불소기 함유 수분산 폴리우레탄의 합성과 물성)

  • Lee Jung Eun;Kim Hyung Joong
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.172-176
    • /
    • 2005
  • Environmentally friendly water dispersion polyurethanes containing fluorine were prepared with a fluorinated polyol having $62\%$ of fluorine $(Fluorolink^{(R)}\;M_n\;1000)$. In order to control the fluorine contents of the synthesized polyurethanes polytetramethylene glycol (PTMG2000) and $Fluorolink^{(R)}$ were mixed at assigned ratios and reacted with isophorone diisocyanate (IPDI) as a diisocyanate used. Introducing hydrophilic anion to the polymer chain was achieved by applying dimethyl propionic acid (DMPA). The ionic groups were neutralized with triethyl amine (TEA) before dispersion into water. Chain extension was executed by adding ethylene diamine at the final stage. Mechanical properties of the polymers showed that modulus increased with increasing $Fluorolink^{(R)}$ content. Surface energy values obtained from contact angle measurement decreased with increasing $Fluorolink^{(R)}$ content up to $20\%$. We expect that the synthesized polyurethanes present reliable effect from the fluorine atoms incorporated even at a small amount of $Fluorolink^{(R)}$.

Poly(Ethylene Glycol)-branched Polyethylenimine-poly(L-phenylalanine) Block Copolymer Synthesized by Multi-initiation Method for Formation of More Stable Polyelectrolyte Complex with Biotherapeutic Drugs

  • Park, Woo-Ram;Na, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • An amphiphilic cationic branched methoxy poly (ethylene glycol)-branched polyethylenimine - poly(L-phenylalanine) (mPEG-bPEI-pPhe) block copolymer was successfully synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of L-phenylalanine (Phe-NCA) with mPEG-bPEI for the preparation of more stable polyelectrolyte complex (PEC) included a hydrophobic interaction. mPEG-bPEI was firstly prepared by the coupling of mPEG and bPEI using hexamethylene diisocyanate (HMDI). The structural properties of mPEG-bPEI-pPhe copolymers were confirmed by $^1H$ NMR. The copolymers exhibited a self-assemble behavior in water above critical aggregate concentration (CAC) in the range of 0.01-0.14 g/L. The CAC of copolymers obviously depended on the hydrophobic block content in the copolymers (the value decreased with the increase of the pPhe block content). The cationic copolymers have the ability to form multi-interaction complex (MIC) with bovine serum albumin (BSA) and plasmid DNA through multi-interaction (electrostatic and hydrophobic interaction). The physicochemical characterization of the complex was carried out by the measurement of zeta potential and particle size. Their zeta-potentials were positive (approximately +10 mV) and their sizes decreased with increasing pPhe contents in the copolymers (PPF/BSA wt% ratio = 2). The complex showed good stability at high ionic strength. Therefore, mPEG-bPEI-pPhe block copolymer was considered as a potential material to enhance the stability of complex including biotherapuetic drugs.

Fabrication and Characterization of Polyurethane Foam for Wound Dressing (창상치료용 폴리우레탄 폼의 제조 및 특성연구)

  • Kim, Won-Il;Kim, Cheol-Joo;Kim, Dae-Yeon;Kwon, Oh-Kyoung;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.442-449
    • /
    • 2010
  • Polyurethane(PU) prepolymer was synthesized from ethylene oxide/propylene oxide(EO/PO) random polyether polyol, toluene diisocyanate and chain extender such as ethylene glycol and 1,4-butanediol. PU foams having various compositions were fabricated from PU prepolymers with different hard segment contents(%) and mixed foaming solution of different compositions. PU foam from chain extender-introduced PU prepolymer and mixed foaming solution containing glycerin showed better mechanical property than other groups. Various PU foams were tested on their mechanical property, moisture vapor transmission rate, absorption speed, absorptivity, morphology and cell culture test. According to the test, the PU foam fabricated from chain extender-introduced PU prepolymer and mixed foaming solution containing optimum composition of F-68, glycerin and CMC was found to have the best property for wound dressing materials. From in vivo animal study, it was confirmed that above PU foam showed rapid wound recovery.

Morphology and Mechanical Properties of Recycled PVC Blends (III) - Morphologies and Mechanical Properties of Recycled PVC/PE Blends with Different Kinds of Compatibilizers and Mixing Conditions (폐폴리(염화 비닐)계 고분자 블렌드의 구조 및 물성 연구(III) -상용화제의 종류 및 혼합 조건에 따른 폐폴리(염화 비닐)/폴리에틸렌 고분자 블렌드의 형태학 및 물성)

  • 유영재;박재찬;원종찬;최길영;이재흥
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.468-477
    • /
    • 2004
  • The polymer blends of waste poly(vinyl chloride) (RPVC) and waste polyethylene (RPE) were prepared by melt mixing. Various ethylene-vinyl acetate copolymers (EVA) and ethylene-methacrylic acid Na salt copolymer (ionomer) were used as compatibilizer. Their morphologies and mechanical properties were evaluated as a funtion of mixing sequence and time. EVA with high vinyl acetate contents showed a rapid increment of tensile properties when small amount was added. Tensile properties of the blends were gradually increased with the addition of ionomer. Morphologies of RPVC/RPE blends were analyzed by scanning electron microscopy. FT-IR data showed that EVA was a good compatibilizer in RPVC/RPE blend compared to ionomer. Mechanical properties of the blends were highly enhanced when RPVC and compatibilizer were mixed and first RPE was added later.

Effect of Graft Copolymer Composition on the Compatibility of Biodegradable PCL/PCL-g-PEG Blend (PCL/PCL-g-PEG 생분해성 블렌드에서 그래프트 공중합체의 조성에 따른 상용성의 영향)

  • Cho, Kuk-Young;Lee, Ki-Seok;Park, Jung-Ki
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.248-253
    • /
    • 2009
  • Blend films based on the poly($\varepsilon$-caprolactone) (PCL) and amphiphilic biodegradable polymer, poly(ethylene glycol) grafted poly($\varepsilon$-caprolactone) (PCL-g- PEG), were prepared with different blend ratios in order to develop new biomedical material. PCL was the main component in the blend. The miscibility and characteristics of the blends were investigated. The crystallization temperature of the blend shifted to high temperatures with an increase of the graft copolymer contents when the homopolymer PCL was the main component of the blend. The PEG side chain in the blend affected the crystallization rate of the PCL crystals in the blend and alternating extinction bands were observed by optical microscopy. The protein adhesion behavior of the film was influenced by the water uptake of the film.