• 제목/요약/키워드: ethylene biosynthetic genes

검색결과 7건 처리시간 0.024초

Ethylene Production and Expression of Two Ethylene Biosynthetic Genes in Senescing Flowers of Hosta ventricosa

  • Zhu, Xiaoxian;Hu, Haitao;Guo, Weidong;Chen, Jianhua;Wang, Changchun;Yang, Ling
    • 원예과학기술지
    • /
    • 제32권2호
    • /
    • pp.261-268
    • /
    • 2014
  • Senescence of Hosta ventricosa flowers was firstly characterized as ethylene-sensitive since the deterioration of the tepal was accompanied by increased endogenous ethylene biosynthesis. The full-length cDNAs and DNAs of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) involved in ethylene biosynthesis were cloned from H. ventricosa flowers. The HvACS ORF with 1347 bp and two introns, encoded a polypeptide of 448 amino acids showing 79% homology with that in Musa acuminata. The HvACO ORF contained 957 bp and three introns, encoding a 318-residue polypeptide showing 83% homology with that in Narcissus tazetta. The timing of the induction of HvACS expression was in correspond to the timing of the increase in ethylene production, and that the up-regulation of HvACO transcript was closely correlated with an elevated ethylene production, but underwent a down-regulation in wounded leaves with elevated ethylene emission. The results, together with expression analysis in vegetative tissues, suggested that both HvACS and HvACO were specifically regulated by flower senescence.

Regulation of Ethylene Biosynthesis by Phytohormones in Etiolated Rice (Oryza sativa L.) Seedlings

  • Lee, Han Yong;Yoon, Gyeong Mee
    • Molecules and Cells
    • /
    • 제41권4호
    • /
    • pp.311-319
    • /
    • 2018
  • The gaseous hormone ethylene influences many aspects of plant growth, development, and responses to a variety of stresses. The biosynthesis of ethylene is tightly regulated by various internal and external stimuli, and the primary target of the regulation is the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis. We have previously demonstrated that the regulation of ethylene biosynthesis is a common feature of most of the phytohormones in etiolated Arabidopsis seedlings via the modulation of the protein stability of ACS. Here, we show that various phytohormones also regulate ethylene biosynthesis from etiolated rice seedlings in a similar manner to those in Arabidopsis. Cytokinin, brassinosteroids, and gibberellic acid increase ethylene biosynthesis without changing the transcript levels of neither OsACS nor ACC oxidases (OsACO), a family of enzymes catalyzing the final step of the ethylene biosynthetic pathway. Likewise, salicylic acid and abscisic acid do not alter the gene expression of OsACS, but both hormones downregulate the transcript levels of a subset of ACO genes, resulting in a decrease in ethylene biosynthesis. In addition, we show that the treatment of the phytohormones results in distinct etiolated seedling phenotypes, some of which resemble ethylene-responsive phenotypes, while others display ethylene-independent morphologies, indicating a complicated hormone crosstalk in rice. Together, our study brings a new insight into crosstalk between ethylene biosynthesis and other phytohormones, and provides evidence that rice ethylene biosynthesis could be regulated by the post-transcriptional regulation of ACS proteins.

Abscisic acid(ABA) 및 fluridone의 처리가 'Hongro' 사과의 과피 착색에 미치는 영향 (Effects of Abscisic Acid (ABA) and Fluridone on Red Coloration of 'Hongro' Apple Fruit Skins)

  • 류수현;권용희;도경란;정재훈;한현희;한점화
    • 생물환경조절학회지
    • /
    • 제25권4호
    • /
    • pp.240-248
    • /
    • 2016
  • 식물 호르몬의 일종인 ABA의 처리가 사과 과피의 착색에 미치는 영향을 알아보기 위하여, 착색이 시작되는 시기의 'Hongro' 사과에 abscisic acid (ABA)와 ABA의 생합성 저해제인 fluridone (FD)을 처리한 뒤 과피의 색변화를 관찰하였다. 실험 결과, ABA와 FD 처리에 의해 'Hongro' 사과의 착색이 큰 영향을 받지 않았다. 과피의 붉은 색을 나타내는 hunter a값이 처리 7일 후까지 처리간에 차이가 없었다. 실제 과피의 안토시아닌 함량은 과피의 hunter a값의 변화와 같은 경향을 보이며 증가하였으며, ABA나 FD의 처리가 과피의 안토시아닌 축적에 영향을 주지 않았다. ABA의 처리 직후 과피의 내생 ABA함량이 급격히 증가하였고 처리 종료 시까지 높게 유지되었다. FD 처리구의 과피 내 ABA함량은 처리 6시간 후부터 대조구보다 낮아지다가, 처리 4일 후까지 지속적으로 감소하였다. ABA의 처리에 의해서 과피의 MdNCED2 (ABA 생합성 유전자)의 발현량이 증가하였고, MdACO1 (ethlyene 생합성 유전자) 및 안토시아닌 생합성 유전자 중 MdCHS와 MdDFR의 발현량이 증가하였다. 하지만 MdUFGT의 발현량은 ABA 처리에 의해서 변화가 없었다.

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol;Lee, Shinyoung;Park, Bokyung;Choi, Wonkyun;Kim, Chanmin;Lee, Sanghun;Chung, Woo Sik;Lee, Sang Yeol;Sabir, Jamal;Bressan, Ray A.;Bohnert, Hans J.;Mengiste, Tesfaye;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.40-50
    • /
    • 2015
  • In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.

Isolation and Characterization of ACC Synthase Gene Family in Mung Bean (Vigna radiata L.): Differential Expression of the Three ACC Synthase enes in Response to Auxin and Brassinosteroid

  • Sunjoo Joo;Kim, Woo-Taek
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.61-71
    • /
    • 2000
  • By screening a cDNA library of auxin-treated mung bean (Vigna radiata L.) hypocotyls, we have isolated two full-length cDNA clones, pVR-ACS6 and pVR-ACS7, for 1-aminocyclopropane-1-carboxylate (ACC) synthase, the rate-limiting enzyme in the ethylene biosynthetic pathway. While PVR-ACS6 corresponds to the previously identified PCR fragment pMBA1, pVR-ACS7 is a new cDNA clone. A comparison of deduced amino acid sequences among auxin-induced ACC synthases reveal that these enzymes share a high degree of homology (65-75%) to VR-ACS6 and VR-ACS7 polypeptides, but only about 50% to VR-ACS1 polypeptide. ACS6 and ACS7 are specifically induced by auxin, while ACS1 is induced by cycloheximide, and to lesser extent by excision and auxin treatment. Results from nuclear run-on transcription assay and RNA gel blot studies revealed that all three genes were transcriptionally active displaying unique patterns of induction by IAA and various hormones in etiolated hypocotyls. Particularly, 24-epibrassinolide (BR), an active brassinosteroid, specifically enhanced the expression of VR-ACS7 by distinct temporal induction mechanism compared to that of IAA. In addition, BR synergistically increased the IAA-induced VR-ACS6 and VR-ACS7 transcript levels, while it effectively abolished both the IAA- and kinetin-induced accumulation of VR-ACS1 mRNA. In light-grown plants, VR-ACS1 was induced by IAA in roots, whereas W-ACS6 in epicotyls. IAA- and BR-treatments were not able to increase the VR-ACS7 transcript in the light-grown tissues. These results indicate that the expression of ACC synthase multigene family is regulated by complex hormonal and developmental networks in a gene- and tissue-specific manner in mung bean plants. The VR-ACS7 gene was isolated, and chimeric fusion between the 2.4 kb 5'-upstream region and the $\beta$-glucuronidase (GUS) reporter gene was constructed and introduced into Nicotiana tobacum. Analysis of transgenic tobacco plants revealed the VR-ACS7 promoter-driven GUS activity at a highly localized region of the hypocotyl-root junction of control seedlings, while a marked induction of GUS activity was detected only in the hypocotyl region of the IAA-treated transgenic seedlings where rapid cell elongation occurs. Although there was a modest synergistic effect of BR on the IAA-induced GUS activity, BR alone failed to increase the GUS activity, suggesting that induction of VR-ACS7 occurs via separate signaling pathways in response to IAA and BR.

  • PDF

A Genetically Encoded Biosensor for the Detection of Levulinic Acid

  • Tae Hyun Kim;Seung-Gyun Woo;Seong Keun Kim;Byeong Hyeon Yoo;Jonghyeok Shin;Eugene Rha;Soo Jung Kim;Kil Koang Kwon;Hyewon Lee;Haseong Kim;Hee-Taek Kim;Bong-Hyun Sung;Seung-Goo Lee;Dae-Hee Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권4호
    • /
    • pp.552-558
    • /
    • 2023
  • Levulinic acid (LA) is a valuable chemical used in fuel additives, fragrances, and polymers. In this study, we proposed possible biosynthetic pathways for LA production from lignin and poly(ethylene terephthalate). We also created a genetically encoded biosensor responsive to LA, which can be used for screening and evolving the LA biosynthesis pathway genes, by employing an LvaR transcriptional regulator of Pseudomonas putida KT2440 to express a fluorescent reporter gene. The LvaR regulator senses LA as a cognate ligand. The LA biosensor was first examined in an Escherichia coli strain and was found to be non-functional. When the host of the LA biosensor was switched from E. coli to P. putida KT2440, the LA biosensor showed a linear correlation between fluorescence intensity and LA concentration in the range of 0.156-10 mM LA. In addition, we determined that 0.156 mM LA was the limit of LA detection in P. putida KT2440 harboring an LA-responsive biosensor. The maximal fluorescence increase was 12.3-fold in the presence of 10 mM LA compared to that in the absence of LA. The individual cell responses to LA concentrations reflected the population-averaged responses, which enabled high-throughput screening of enzymes and metabolic pathways involved in LA biosynthesis and sustainable production of LA in engineered microbes.