DOI QR코드

DOI QR Code

Abscisic acid(ABA) 및 fluridone의 처리가 'Hongro' 사과의 과피 착색에 미치는 영향

Effects of Abscisic Acid (ABA) and Fluridone on Red Coloration of 'Hongro' Apple Fruit Skins

  • 류수현 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 권용희 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 도경란 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 정재훈 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 한현희 (농촌진흥청 국립원예특작과학원 원예작물부 과수과) ;
  • 한점화 (농촌진흥청 국립원예특작과학원 원예작물부 과수과)
  • Ryu, Suhyun (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kwon, Yong Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Do, Gyeong Ran (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Jeong, Jae Hoon (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Han, Hyun Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Han, Jeom Hwa (Fruit Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 투고 : 2016.09.04
  • 심사 : 2016.11.03
  • 발행 : 2016.12.31

초록

식물 호르몬의 일종인 ABA의 처리가 사과 과피의 착색에 미치는 영향을 알아보기 위하여, 착색이 시작되는 시기의 'Hongro' 사과에 abscisic acid (ABA)와 ABA의 생합성 저해제인 fluridone (FD)을 처리한 뒤 과피의 색변화를 관찰하였다. 실험 결과, ABA와 FD 처리에 의해 'Hongro' 사과의 착색이 큰 영향을 받지 않았다. 과피의 붉은 색을 나타내는 hunter a값이 처리 7일 후까지 처리간에 차이가 없었다. 실제 과피의 안토시아닌 함량은 과피의 hunter a값의 변화와 같은 경향을 보이며 증가하였으며, ABA나 FD의 처리가 과피의 안토시아닌 축적에 영향을 주지 않았다. ABA의 처리 직후 과피의 내생 ABA함량이 급격히 증가하였고 처리 종료 시까지 높게 유지되었다. FD 처리구의 과피 내 ABA함량은 처리 6시간 후부터 대조구보다 낮아지다가, 처리 4일 후까지 지속적으로 감소하였다. ABA의 처리에 의해서 과피의 MdNCED2 (ABA 생합성 유전자)의 발현량이 증가하였고, MdACO1 (ethlyene 생합성 유전자) 및 안토시아닌 생합성 유전자 중 MdCHS와 MdDFR의 발현량이 증가하였다. 하지만 MdUFGT의 발현량은 ABA 처리에 의해서 변화가 없었다.

The objective of this study was to determine the effect of exogenous abscisic acid (ABA) on the red coloration and endogenous ABA contents of apple fruit skins. ABA and fluridone (an ABA synthetic inhibitor, FD) was sprayed on 'Hongro' apple fruit skins at 107 days after full bloom (DAFB). Visual coloration and hunter's color values were not affected by the ABA and FD treatments. Anthocyanin contents in fruit skins increased similarly to hunter $a^*$ values of fruit skins, but ABA and FD did not affect its accumulations. Liquid chromatography analysis revealed that endogenous ABA contents in control fruit increased at first and then decreased from 12 hours after the treatment. ABA treatment increased ABA contents in fruit skins from 2 hour after the treatment and it lasted until the end of the treatments. FD decreased ABA contents in fruit skins from 6 hours after the treatment. ABA treatment increased MdNCED2 (an ABA biosynthetic gene), MdACO1 (an ethylene biosynthetic gene), and MdCHS and MdDFR expressions. However, MdUFGT expressions were not affected by ABA treatment.

키워드

참고문헌

  1. Barry, C. and J.J. Giovannoni. 2007. Ethylene and fruit ripening. J. Pkant Growth Regul. 26(2):143-159. https://doi.org/10.1007/s00344-007-9002-y
  2. Cantin, C.M., Fidelibus, M.W., and C.H. Crisosto. 2007. Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of 'Crimson Seedless' grapes. Postharvest Biol. Tech. 46(3):237-241. https://doi.org/10.1016/j.postharvbio.2007.05.017
  3. Chung, P.S. and H.S. Park. 1989. Effects of plant growth regulators on anthocyanin development in the fruit skin of Malus domestica Borkh cv. Jonagold. Rural Development Review. 24:67-72.
  4. Cornforth, J.W., Milborrow, B.V., and G. Ryback. 1966. Identification and estimation of (+)-abscisin II ('dormin') in plant extracts by spectropolarimetry. Nature 210(5036):627-628. https://doi.org/10.1038/210627a0
  5. El-Antably, H.M.M., Wareing, P.F., and J. Hillman. 1966. Some physiological responses to D, L abscisin (dormin). Planta 73(1):74-90. https://doi.org/10.1007/BF00419842
  6. Gu, S., Jacobs, S., and G. Du. 2011. Efficacy, rate and timing of applications of abscisic acid to enhance fruit anthocyanin contents in 'Cabernet Sauvignon' grapes. J. Hortic. Sci. Biotech. 86(5):505-510. https://doi.org/10.1080/14620316.2011.11512796
  7. Hunter, R.S. 1975. Scales for measurements of color differences. In Measurement of Appearance. Wiley-Interscience, NY, p.133.
  8. Jaakola, L., Pirttila, A.M., Halonen, M., and A. Hohtola. 2001. Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol. biotechnol. 19(2):201-203. https://doi.org/10.1385/MB:19:2:201
  9. Jiang, Y. and D.C. Joyce. 2003. ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regul. 39(2):171-174. https://doi.org/10.1023/A:1022539901044
  10. Jiang, Y., Joyce, D.C., and A.J. Macnish. 2000. Effects of abscisic acid on banana fruit ripening in regulation to the role of ethylene. J. Plant Growth Regul. 19(1):106-111. https://doi.org/10.1007/s003440000011
  11. Kim, S.H., Lee, J.R., Hong, S.T., Yoo, Y.K., An, G., and S.R. Kim. 2003. Molecular cloning and analysis of anthocyanin biosynthesis gene preferentially expressed in apple skin. Plant Sci. 165(2): 403-413. https://doi.org/10.1016/S0168-9452(03)00201-2
  12. Kondo, S. and K. Inoue. 1997. Abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylic acid (ACC) content during growth of 'Satohnishiki' cherry fruit, and the effect of ABA and ethephon application on fruit quality. J. Hortic. Sci. 72(2):221-227. https://doi.org/10.1080/14620316.1997.11515509
  13. Kondo, S., Sugaya, S., Sugaya, S., Ninomiya, M., Kittikorn, M., Okawa, K., Ohara, H., Ueno, K., Todoroki, Y., Mizutani, M., and N. Hirai. 2012a. Dehydration tolerance in apple seedlings is affected by an inhibitor of ABA 8'-hydroxylase CYP707A. J. Plant Physiol. 169(3): 234-241. https://doi.org/10.1016/j.jplph.2011.09.007
  14. Kondo, S., Tomiyama, H., Kittikorn, M., Okawa, K., Ohara, H., Yokoyama, M., Ifuku, O., Saito, T., Ban, Y., Tatsuki, M., Moriguchi, T., Murata, A., and N. Watanabe. 2012b. Ethylene production and 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression in apple fruit are affected by 9,10-ketol-octadecadienoic acid (KODA). Postharvest Biol. Technol. 72: 20-26. https://doi.org/10.1016/j.postharvbio.2012.04.012
  15. Lara, I. and M. Vendrell. 2000a. Changes in abscisic acid levels, ethylene biosynthesis, and protein patterns during fruit maturation of 'Granny Smith' apples. J. Amer. Soc. Hort. Sci. 125(2):183-189.
  16. Lara, I. and M. Vendrell. 2000b. Development of ethylenesynthesizing capacity in preclimacteric apples: Interaction between abscisic acid and ethylene. J. Amer. Soc. Hort. Sci. 125(4):505-512.
  17. Lara, I. and M. Vendrell. 2003. Cold-induced ethylene biosynthesis is differentially regulated in peel and pulp tissues of 'Granny Smith' apple fruit. Postharvest Biol. Tech. 29(2):109-119. https://doi.org/10.1016/S0925-5214(02)00243-0
  18. Lee, H.C. 1999. Physiological and ecological factors affecting fruit coloration and color enhancement in Malus Domestica Borkh., cv. Fuji. Ph. D. Diss., Seoul National University. p. 48-51.
  19. Li, J., Zhu, H., and R. Yuan. 2010. Profiling the expression of genes related to ethylene biosynthesis, ethylene perception, and cell wall degradation during fruit abscission and fruit ripening in apple. J. Amer. Soc. Hort. Sci. 135(5): 391-401.
  20. Luo, H., Dai, S.J., Ren, J., Zhang, C.X., Ding, Y., Li, Z., Sun, Y., Ji, K., Wang, Y., Li, Q., Che, P., Duan, C., Wang, Y., and P. Leng. 2014. The role of ABA in the maturation and postharvest life of a nonclimacteric sweet cherry fruit. J. Plant Growth Regul. 33(2):373-383. https://doi.org/10.1007/s00344-013-9388-7
  21. McGuire, R.G. 1992. Reporting of objective color measurements. HortScience 27(12):1254-1255.
  22. Nambara, E. and A. Marion-Poll. 2005. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56:165-185. https://doi.org/10.1146/annurev.arplant.56.032604.144046
  23. Sandhu, A.K., Gray, D.J., Lu, J., and L. Gu. 2011. Effects of exogenous abscisic acid on antioxidant capacities, anthocyanins, and flavonol contents of muscadine grape (Vitis rotundifolia) skins. Food Chem. 126(3):982-988. https://doi.org/10.1016/j.foodchem.2010.11.105
  24. Shin, K.H. and H.S. Park. 2012. Fruit color improvement by ABA treatment and determination of harvesting time in 'Hongisul' grapes. Kor. J. Hort. Sci. Technol. 30(3):256-260.
  25. Shin, Y.U. and M.J. Kim. 2010. Cultivar. p. 78-79 and 87. In: Y.J. Yim (ed.). Luxury strategy of apple. Semyung Press, Suwon, Korea.
  26. Tijero, V., Teribia, N., Munoz, P., and S. Munne-Bosch. 2016. Implication of abscisic acid on ripening and quality in sweet cherries: Differential effects during pre- and post-harvest. Front. Plant Sci. 7:602.
  27. Vendrell, M. and C. Buesa. 1989. Relationship between abscisic acid content and ripening of apples. Acta Hort. 258:389-396.
  28. Xiong, L. and J.K. Zhu. 2003. Regulation of abscisic acid biosynthesis. Plant Physiol. 133(1):29-36. https://doi.org/10.1104/pp.103.025395
  29. Yim, Y.J., Jang, J.Y., and H.C. Lee. 2000. Effect of optically active ABA and its synthetic intermediate STC4771 on defoliation and fruit color in 'Fuji' apple. Hort. Environ. Biotechnol. 41(1):53-55.
  30. Yim, Y.J. 2015. Fruit science general. 1st ed. Hyangmoonsha Press. Seoul. Korea. p. 206 and 212-214.
  31. Zhang, M., Yuan, B., and P. Leng. 2009. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J. Exp. Bot. 60(6):1579-1588. https://doi.org/10.1093/jxb/erp026