• Title/Summary/Keyword: ethylbenzene

Search Result 272, Processing Time 0.026 seconds

Measurement of Autoignition Temperature of Ethylbenzene+n-hexanol and Ethylbenzene+n-propionic Acid Systems (Ethylbenzene+n-hexanol 계와 ethylbenzene+n-propionic acid계의 최소자연발화온도의 측정)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.33-40
    • /
    • 2007
  • The values of the AITs(Autoignition temperatures) for fire and explosion protection are normally the lowest reported. This study measured the AITs of ethylbenzene+n-hexanol and ethylbenzene+n-propionic acid Systems from ignition delay time(time lag) by using ASTM E659-78 apparatus. The AITs of ethylbenzene, n-hexanol and n-propionic acid which constituted binary systems were $475^{\circ}C,\;275^{\circ}C\;and\;511^{\circ}C$, respectively. The experimental ignition delay time of ethylbenzene+n-hexanol and ethylbenzene+n-propionic acid systems were a good agreement with the calculated ignition delay time by the proposed equations with a few A.A.D.(average absolute deviation).

Prediction of Minimum Spontaneous Ignition Temperature(MSIT) of the Mixture of n-Pentanol and Ethylbenzene (n-Pentanol과 Ethylbenzene 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.45-51
    • /
    • 2012
  • The MSITs(Minimum Spontaneous Ignition Temperatures) or AITs(Autoignition Temperatures) describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. This study measured the MSITs(Minimum Spontaneous Ignition Temperatures) of n-pentanol+ethylbenzene system by using ASTM E659 apparatus. The MSITs of pure n-pentanol and ethylbenzene were $285^{\circ}C$ and $475^{\circ}C$, respectively. The experimental MSITs of n-pentanol+ethylbenzene system were a in good agreement with the MSIT calculated by the proposed equations with a few A.A.D.(average absolute deviation).

Measurement of Flash Point for Binary Mixtures of Toluene, Methylcyclohexane, n-heptane and Ethylbenzene at 101.3 kPa (Toluene, Methylcyclohexane, n-heptane 그리고 Ethylbenzene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.19-24
    • /
    • 2017
  • Flammable substances are used in laboratories and industrial process. The flash point (FP) is one of the most important physical properties used to determine the potential for characterizing the fire and explosion hazard of liquids. The FP data at 101.3 kPa were measured for the binary systems {toluene+ethylbenzene}, {methlycyclohenxane+ethylbenzene} and {n-heptane+ ethylbenzene}. The experiments were performed according to the standard test method (ASTM D 3278) using a SETA closed cup flash point tester. The measured FPs were compared with the values predicted using the following activity coefficient models: Wilson, Non-Random Two Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC). The average absolute deviation between the predicted and measured lower FP was less than 1.74 K.

Substrate Interactions on Biodegradation of Benzene, Toluene, Ethylbenzene and Xylene Isomers(BTEX) by Indigenous Soil Microorganisms (토양미생물을 이용한 Benzene, Toluene, Ethylbenzene 그리고 Xylene isomers(BTEX)의 분해시 기질반응)

  • La, Hyun-Joo;Chang, Soon-Woong;Lee, Si-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.375-383
    • /
    • 2000
  • A mixed culture isolated from petroleum-contaminated soil was enriched on toluene as a sole carbon and energy source, and degradation characteristics of BTEX(Benzene, Toluene, Ethylbenzene, Xylenes) was observed. In the single-substrate experiments, all the BTEX compounds were degraded, and it was degraded as following orders; toluene, benzene, ethylbenzene, and p-xylene. In the degradation experiments of BTEX mixtures, the degradation rate was decreased compared to that in the single substrate experiment and ethylbenzene was degraded faster than benzene. In the experiments of binary-mixtures, various substrate interactions such as inhibition, stimulation, and non-interaction were observed, and ethylbenzene was shown to be most potent inhibitor of BTEX degradation. In the degradation characteristic studies of xylene isomers, m-xylene and p-xylene were degraded as carbon sources, and it was stimulated in the presence of either benzene or toluene. However, degradation of o-xylene was enhanced only in the presence of benzene.

  • PDF

Microbacterium esteraromaticum CS3-1의 toluene 분해능에 미치는 benzene, ethylbenzene, xylene의 영향

  • Jeon, Yeon-Sin;Lee, Eun-Yeong;Jo, Gyeong-Suk;Ryu, Hui-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.179-182
    • /
    • 2000
  • Toluene-degrading bacterium, Microbacterium esteraromaticum CS3-1 was isolated from the biofilter for the removal of BTEX. Microbacterium esteraromaticum CS3-1 was shown to utilize toluene as a primary carbon and energy source. Effect of mixed BTEX gases on toluene degradation rate by M. esteraromaticum CS3-1 was investigated in this study. Toluene degradation rate was 2.26(only toluene), 2.06(toluene+benzene), 2.57(toluene+ethylbenzene), and 4.74(toluene+xylene) mmole $toluene\;{\cdot}\;g-DCW^{-1}\;{\cdot}\;h^{-1}$. Toluene degradation rate was 2.26(only toluene), 1.23(toluene+benzene+ethylbenzene), 1.52 (toluene+ethylbenzene+xylene), and 1.76(toluene+benzene+ethylbenzene+xylene) mmole $toluene\;{\cdot}\;g-DCW^{-1}\;{\cdot}\;h^{-1}$. The presence of BTEX compounds over three mixtures had a negative effect on toluene degradation rate. Toluene degradation rates were enhanced by the presence of ethylbenzene or xylene, whereas the presence of benzene had a negative effect on toluene degradation rate in comparison with toluene degradation rate when only toluene is existent.

  • PDF

Biodegradation of Aromatic Hydrocarbons by Toluene-tolerant Pseudomonas sp. BCNU 154 (Toluene내성세균 Pseudomonas sp. BCNU 154을 이용한 방향족화합물의 분해)

  • 성은미;정영기;이호원;주우홍
    • Journal of Life Science
    • /
    • v.9 no.6
    • /
    • pp.715-721
    • /
    • 1999
  • The biodegradative potentialities of a toluene-tolerant Pseudomonas sp. BCNU 154, isolated from waste water, were investigated. Among 16 aromatic substrates tested, cumene, cyclohexane, ethylbenzene, p-xylene, m-xyene, toluene and diphenylether were metabolized. Pseudomonas sp. BCNU 154 degraded aerobically toluene, ethylbenzene, p-xylene and cumene. With toluene competitive degradation occurred after 12 hours, but with p-xylene and cumene, and with ethylbenzene, 90 and 75% degradation occurred after 12 hours of incubation, respectively.

  • PDF

The Measurement and Prediction of Combustible Properties for Ethylbenzene (에틸벤젠의 연소특성치 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.169-175
    • /
    • 2014
  • For the safe handling of ethylbenzene, this study was investigated the explosion limits of ethylbenzene in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of ethylbenzene by using Setaflash closed-cup and Pensky-Martens closed-cup testers were experimented $20^{\circ}C$ and $22^{\circ}C$, respectively. The lower flash points ethylbenzene by using Tag and Cleveland open cup testers were experimented $25^{\circ}C$ and $28^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for ethylbnezene. The experimental AIT of ethylbenzene was $430^{\circ}C$. The calculated LEL and UEL by using the measured lower flash point and upper flash point were 0.93 Vol.% and 7.96 Vol.%, respectively.

Dehydrogenation of Ethylbenzene with Carbon Dioxide as Soft Oxidant over Supported Vanadium-Antimony Oxide Catalyst

  • Hong, Do-Young;Vislovskiy, Vladislav P.;Park, Sang-Eon;Park, Min-Seok;Yoo, Jin-S.;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1743-1748
    • /
    • 2005
  • This work presents that carbon dioxide, which is a main contributor to the global warming effect, could be utilized as a selective oxidant in the oxidative dehydrogenation of ethylbenzene. The dehydrogenation of ethylbenzene over alumina-supported vanadium-antimony oxide catalyst has been studied under different atmospheres such as inert nitrogen, steam, oxygen or carbon dioxide as diluent or oxidant. Among them, the addition of carbon dioxide gave the highest styrene yield (up to 82%) and styrene selectivity (up to 97%) along with stable activity. Carbon dioxide could play a beneficial role of a selective oxidant in the improvement of the catalytic behavior through the oxidative pathway.

Operational Condition and Temperature Study for Ethylbenzene Treating Biofilter

  • Son, Hun-Keun;Bradley A. Striebig
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.4
    • /
    • pp.4-9
    • /
    • 2003
  • Biofiltration can effectively remove both organic and inorganic air pollution compounds from both industrial and public sources. However, for the optimal biofiltration performance, it is necessary to gain a better understanding of the inner environment and destruction mechanisms within a biofilter. The effects of operational factors on removal efficiency was studied. Generally, removal efficiency decreases as the loading rate increases. Temperature, as one of the key factors that affect biofiltration design and performance, was also investigated. Conceptually, the biofilter reactor of this paper was divided into five different consecutive stages. The more ethylbenzene COD degraded at each stage, the higher the temperature increases observed compared to the temperatures of the previous stages. It was observed that for every 1 kg of ethylbenzene COD degraded per cubic meter of biofilter media, there was generally a 0.41$^{\circ}C$ increase in the temperature of that stage.