DOI QR코드

DOI QR Code

Dehydrogenation of Ethylbenzene with Carbon Dioxide as Soft Oxidant over Supported Vanadium-Antimony Oxide Catalyst

  • Hong, Do-Young (Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Vislovskiy, Vladislav P. (Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Park, Sang-Eon (Department of Chemistry, Inha University) ;
  • Park, Min-Seok (Department of Biotechnology & Food Science, Mongolia International University) ;
  • Yoo, Jin-S. (Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Chang, Jong-San (Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology (KRICT))
  • Published : 2005.11.20

Abstract

This work presents that carbon dioxide, which is a main contributor to the global warming effect, could be utilized as a selective oxidant in the oxidative dehydrogenation of ethylbenzene. The dehydrogenation of ethylbenzene over alumina-supported vanadium-antimony oxide catalyst has been studied under different atmospheres such as inert nitrogen, steam, oxygen or carbon dioxide as diluent or oxidant. Among them, the addition of carbon dioxide gave the highest styrene yield (up to 82%) and styrene selectivity (up to 97%) along with stable activity. Carbon dioxide could play a beneficial role of a selective oxidant in the improvement of the catalytic behavior through the oxidative pathway.

Keywords

References

  1. Inui, T.; Anpo, M.; Izui, K.; Yanagida, S.; Yamaguchi, T. Stud. Sur. Sci. Catal. 1998, 114, 114
  2. Denise, B.; Sneeden, R. P. A. Chem. Technol. 1982, 108
  3. Aresta, M.; Fragale, C.; Quaranta, E.; Tommasi, I. J. J. Chem. Soc., Chem. Commun. 1992, 315
  4. Krylov, O. V.; Mamedov, A. Kh. Ind. Eng. Chem. Res. 1995, 34, 474 https://doi.org/10.1021/ie00041a007
  5. Park, S.-E.; Chang, J.-S.; Yoo, J. S. In Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century; Maroto-Valer, M. M., Soong, Y., Song, C., Eds.; Kluwer Academic/Plenum Publishers: New York, 2001; p 359
  6. Nishiyama, T.; Aika, K. J. Catal. 1990, 122, 346 https://doi.org/10.1016/0021-9517(90)90288-U
  7. Yoo, J. S. Catal. Today 1998, 41, 409 https://doi.org/10.1016/S0920-5861(98)00028-5
  8. Park, S.-E.; Chang, J.-S.; Park, M. S. Prepr. Am. Chem. Soc., Div. Fuel Chem. 1996, 41, 1387
  9. Sugino, M.; Shimada, H.; Turuda, T.; Miura, H.; Ikenaga, N.; Suzuki, T. Appl. Catal. A 1995, 121, 125 https://doi.org/10.1016/0926-860X(95)85015-5
  10. Mimura, N.; Saito, M. Catal. Today 2000, 55, 173 https://doi.org/10.1016/S0920-5861(99)00236-9
  11. Mimura, N.; Takahara, I.; Saito, M.; Sasaki, Y.; Murata, K. Catal. Lett. 2002, 78, 125 https://doi.org/10.1023/A:1014902111562
  12. Badstube, T.; Papp, H.; Dziembaj, R.; Kustrowski, P. Appl. Catal. A 2000, 204, 153 https://doi.org/10.1016/S0926-860X(00)00514-7
  13. Sakurai, Y.; Suzaki, T.; Ikenaga, N.; Suzuki, T. Appl. Catal. A 2000, 192, 281 https://doi.org/10.1016/S0926-860X(99)00398-1
  14. Ikenaga, N.; Tsuruda, T.; Senma, K.; Yamaguchi, T.; Sakurai, Y.;Suzuki, T. Ind. Eng. Chem. Res. 2000, 39, 1228 https://doi.org/10.1021/ie990426q
  15. Sakurai, Y.; Suzaki, T.; Nakagawa, K.; Ikenaga, N.; Aota, H.; Suzuki, T. J. Catal. 2002, 209, 16 https://doi.org/10.1006/jcat.2002.3593
  16. Chang, J.-S.; Park, S.-E.; Park, M. S. Chem. Lett. 1997, 26, 1123
  17. Noh, J.; Chang, J.-S.; Park, J.-N.; Lee, K. Y.; Park, S.-E. Appl. Organomet. Chem. 2000, 14, 815 https://doi.org/10.1002/1099-0739(200012)14:12<815::AID-AOC92>3.0.CO;2-Y
  18. Park, J.-N.; Noh, J.; Chang, J.-S.; Park, S.-E. Catal. Lett. 2000, 65, 75 https://doi.org/10.1023/A:1019021422534
  19. Chang, J.-S.; Noh, J. I.; Park, S.-E.; Kim, W. Y.; Lee, C. W. Bull. Korean Chem. Soc. 1998, 19, 1342
  20. Chang, J.-S.; Park, M. S.; Vislovskiy, V. P.; Park, S.-E.; Yoo, J. S. Prepr. Am. Chem. Soc., Div. Fuel Chem. 2002, 47, 309
  21. Vislovskiy, V. P.; Chang, J.-S.; Park, M. S.; Park, S.-E. Catal. Commun. 2002, 3, 227 https://doi.org/10.1016/S1566-7367(02)00105-X
  22. Centi, G.; Perathoner, S. Catal. Today 1998, 41, 457 https://doi.org/10.1016/S0920-5861(98)00031-5
  23. Xue, E.; Ross, J. R. H.; Mallada, R.; Menendez, M.; Santamaria, J.; Perregard, J.; Nielsen, P. E. H. Appl. Catal. A 2001, 210, 271 https://doi.org/10.1016/S0926-860X(00)00822-X
  24. Mimura, N.; Takahara, I.; Saito, M.; Hattori, T.; Ohkuma, K.; Ando, M. Catal. Today 1998, 45, 61 https://doi.org/10.1016/S0920-5861(98)00246-6
  25. Cavani, F.; Trifiro, F. Appl. Catal. A 1995, 133, 219
  26. Mamedov, E. A.; Corberan, V. C. Appl. Catal. A 1995, 127, 1 https://doi.org/10.1016/0926-860X(95)00056-9
  27. Rizayev, R. G.; Mamedov, E. A.; Vislovskii, V. P.; Sheinin, V. E. Appl. Catal. A 1992, 83, 103 https://doi.org/10.1016/0926-860X(92)85030-F
  28. Grzybowska-Swierkosz, B. Appl. Catal. A 1997, 157, 409 https://doi.org/10.1016/S0926-860X(97)00115-4
  29. Centi, G.; Perathoner, S.; Trifiro, F. Appl. Catal. A 1997, 157, 143 https://doi.org/10.1016/S0926-860X(97)00013-6
  30. Vislovskiy, V. P.; Bychkov, V. Y.; Sinev, M. Y.; Shamilov, N. T.; Ruiz, P.; Schay, Z. Catal. Today 2000, 61, 325 https://doi.org/10.1016/S0920-5861(00)00392-8
  31. Vislovskiy, V. P.; Shamilov, N. T.; Sardarly, A. M.; Bychkov, V. Yu.; Sinev, M. Yu.; Ruiz, P.; Valenzuela, R. X.; Corberan, V. C. Chem. Eng. J. 2003, 95, 37 https://doi.org/10.1016/S1385-8947(03)00081-0
  32. Belomestnykh, I. P.; Skrigan, E. A.; Rozhdestvenskaya, N. N.; Isaguliants, G. V. Stud. Surf. Sci. Catal. 1992, 72, 453 https://doi.org/10.1016/S0167-2991(08)61694-8
  33. Hanuza, J.; Jezowska-Trzebiatowska, B.; Oganowski, W. J. Mol. Catal. 1985, 29, 109 https://doi.org/10.1016/0304-5102(85)85135-X
  34. Chang, W. S.; Chen, Y. Z.; Yang, B. L. Appl. Catal. A 1995, 124, 221 https://doi.org/10.1016/0926-860X(94)00253-3
  35. Mamedov, E. A.; Talyshinskii, R. M.; Rizayev, R. G.; Fierro, J. L. G.; Corberan, V. C. Catal. Today 1996, 32, 177 https://doi.org/10.1016/S0920-5861(96)00086-7
  36. Hirano, T. Appl. Catal. 1986, 26, 81 https://doi.org/10.1016/S0166-9834(00)82543-9
  37. Sato, S.; Ohhara, M.; Sodesawa, T.; Nozaki, F. Appl. Catal. 1988, 37, 207 https://doi.org/10.1016/S0166-9834(00)80761-7
  38. Ye, X.; Hua, W.; Yue, Y.; Dai, W.; Miao, C.; Xie, Z.; Gao, Z. New J. Chem. 2004, 28, 373 https://doi.org/10.1039/b308450g
  39. Saito, M.; Kimura, H.; Mimura, N.; Wu, J.; Murata, K. Appl. Catal. A 2003, 239, 71 https://doi.org/10.1016/S0926-860X(02)00376-9
  40. Dziembaj, R.; Kuoetrowski, P.; Chmielarz, L. Appl. Catal. A 2003, 255, 35 https://doi.org/10.1016/S0926-860X(03)00642-2
  41. Sun, A.; Qin, Z.; Wang, J. Appl. Catal. A 2002, 234, 179 https://doi.org/10.1016/S0926-860X(02)00222-3
  42. Sun, A.; Qin, Z.; Chen, S.; Wang, J. J. Mol. Catal. A: Chem. 2004, 210, 189 https://doi.org/10.1016/j.molcata.2003.09.016
  43. Carja, G.; Nakamura, R.; Aida, T.; Niiyama, H. J. Catal. 2003, 218, 104 https://doi.org/10.1016/S0021-9517(03)00051-4
  44. Park, M.-S.; Vislovskiy, V. P.; Chang, J.-S.; Shul, Y.-G.; Yoo, J. S.; Park, S.-E. Catal. Today 2003, 87, 205 https://doi.org/10.1016/j.cattod.2003.10.015
  45. Chang, J.-S.; Vislovskiy, V. P.; Park, M.-S.; Hong, D.-Y.; Yoo, J. S.; Park, S.-E. Green Chem. 2003, 5, 587 https://doi.org/10.1039/b304825j
  46. Zhu, X. M.; Schon, M.; Bartmann, U.; van Veen, A. C.; Muhler, M. Appl. Catal. A 2004, 266, 99 https://doi.org/10.1016/j.apcata.2004.02.002
  47. Aliyev, V. S.; Talyshinskii, R. M. et al. USSR Pat. 1,234,397, 1986
  48. Bartholomew, C. H. Chem. Eng. 1984, 91, 96
  49. Moulder, J. F. et al. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp.: 1995
  50. Wang, D.; Kung, H. H.; Barteau, M. A. Appl. Catal. A 2000, 201, 203 https://doi.org/10.1016/S0926-860X(00)00439-7
  51. Bars, J. L.; Auroux, A.; Forissier, M.; Vedrine, J. C. J. Catal. 1996, 162, 250 https://doi.org/10.1006/jcat.1996.0282
  52. Datka, J.; Sarbak, Z.; Eischens, R. P. J. Catal. 1994, 145, 544 https://doi.org/10.1006/jcat.1994.1065
  53. Tellez, C.; Abon, M.; Dalmon, J. A.; Mirodatos, C.; Santamaria, J. J. Catal. 2000, 195, 113 https://doi.org/10.1006/jcat.2000.2974
  54. Bielanski, A.; Najbar, M. Appl. Catal. A 1997, 157, 223 https://doi.org/10.1016/S0926-860X(97)00018-5

Cited by

  1. Activity studies of vanadium, iron, carbon and mixed oxides based catalysts for the oxidative dehydrogenation of ethylbenzene to styrene: a review vol.5, pp.12, 2015, https://doi.org/10.1039/C5CY00996K
  2. A new perspective on catalytic dehydrogenation of ethylbenzene: the influence of side-reactions on catalytic performance vol.5, pp.7, 2015, https://doi.org/10.1039/C5CY00457H
  3. vol.41, pp.10, 2017, https://doi.org/10.1039/C7NJ01022B
  4. Ethylbenzene Dehydrogenation with CO2 over V2O5-Fe2O3/Al2O3-TiO2 Catalyst vol.550-553, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.550-553.301
  5. An Overview on the Dehydrogenation of Alkylbenzenes with Carbon Dioxide over Supported Vanadium–Antimony Oxide Catalysts vol.11, pp.1-2, 2007, https://doi.org/10.1007/s10563-007-9021-5
  6. Dehydrogenation of Ethylbenzene to Styrene with Carbon Dioxide Over ZrO2-based Composite Oxide Catalysts vol.12, pp.1, 2008, https://doi.org/10.1007/s10563-007-9039-8
  7. Unique influence of rare earth (Pr, Nd, and Er) oxide surface acidic texture over CeO2/γ-Al2O3 catalysts for selective production of styrene using CO2 flow pp.1568-5675, 2019, https://doi.org/10.1007/s11164-019-03761-z
  8. Dehydrogenation of Ethylbenzene with Carbon Dioxide over Supported Vanadium- Antimony Oxide Catalysts: Effect of Zirconia Modification in Alumina Support vol.27, pp.5, 2005, https://doi.org/10.5012/bkcs.2006.27.5.789
  9. Selective conversion of ethylbenzene into styrene over K2O/TiO2-ZrO2 catalysts: Unified effects of K2O and CO2 vol.269, pp.1, 2005, https://doi.org/10.1016/j.molcata.2006.12.021
  10. Advantage of Co Embedded γ-Al2O3 Catalysts Over MgO and SiO2 Solid Oxides in the Selective Production of Styrene Monomer vol.149, pp.11, 2019, https://doi.org/10.1007/s10562-019-02903-7
  11. Preferential adsorption of CO2 on cobalt ferrite sites and its role in oxidative dehydrogenation of ethylbenzene vol.38, pp.3, 2005, https://doi.org/10.1007/s43153-021-00121-6