• Title/Summary/Keyword: ethyl-acetate fraction

Search Result 1,175, Processing Time 0.029 seconds

Anti-Obesity and Inhibitory Effect of Lipid Accumulation of The Cone of Pinus rigida × Pinus taeda in 3T3-L1 Cells

  • Da-Yoon Lee;Tae-Won Jang;So-Yeon Han;Seo-Yoon Park;Woo-Jin Oh;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.55-55
    • /
    • 2023
  • With the COVID-19 pandemic, there is increasing interest in anti-obesity strategies. According to the National Statistical Office, the obesity rate in Korea was 38.3% in 2020 and 37.1% in 2021. Obesity is a risk factor for several severe diseases, including stroke, heart disease, type 2 diabetes, and certain types of cancer. Pinus rigida × Pinus taeda is a hybrid of Pinus rigida Mill and Pinus taeda Linn, and its cones are considered a by-product. Although previous studies have investigated their pharmacological effects on antioxidant activity and protection against oxidative DNA damage, few researchers have explored their potential as functional natural materials. Therefore, we evaluated the anti-obesity effects of the cone of ethyl acetate fraction of P. rigida × P. taeda (ERT), specifically its ability to inhibit lipid accumulation. Our analysis showed that ERT contains phytochemicals (catechin and caffeic acid) which are known to improve immune function and inhibit cell damage. ERT inhibited lipid droplet accumulation at the cellular levels through Oil Red O staining. Furthermore, ERT suppressed the expression of adipogenic transcription factors (PPARγ and CEBP/α) as well as downstream lipogenic target genes (FAS and SREBP-1) thereby inhibiting adipogenesis. ERT also down-regulated key adipogenic markers, including aP2α, while inducing the phosphorylation of AMPK. It has been reported that PPARγ and CEBP/α are expressed in the early stages of adipose differentiation, while SREBP-1 is expressed in the late stage. Therefore, our findings suggest that ERT activates AMPK signaling pathways, which inhibits adipogenic transcription factors (PPARγ, C/EBPα, and SREBP1) and lipogenic genes (FAS and aP2α), thereby blocking lipid accumulation and preventing obesity and related disorders. ERT showed potential as a new resource for developing a functional material for anti-obesity agents.

  • PDF

Nypa fruticans wurmb Inhibits Melanogenesis via cAMP/PKA/CREB Signaling Pathway in B16 F10 Cells

  • So-Yeon Han;Hye-Jeong Park;Jeong-Yong Park;Seo-Hyun Yun;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.54-54
    • /
    • 2021
  • The Melanoma Research Coalition reported melanoma affects humans of various races. This study was conducted to confirm the inhibitory effect of melanogenesis in B16 F10 cells of Nypa fruticans Wurmb of ethyl acetate fraction (NEF). Nypa fruticans Wurmb is an important component of the East Asian mangrove vegetation. It belongs to Araceae family. Traditionally, N. fruticans was used to treat various diseases such as asthma, sore throat, liver disease, a pain reliever, and can also be used as sedative and carminative. The present study, the inhibitory effect on melanogenesis was determined by Western blotting and RT-qPCR. The level of expression of tyrosinase, TRP-1, and TRP-2 is regulated by microphthalmia-associated transcription factor (MITF) and cAMP, and cAMP affects the activity of protein kinase A (PKA). Activated PKA stimulates the phosphorylation of cAMP-reactive element-binding protein (CREB) in the nucleus, thereby increasing the amount of MITF expression and enhancing melanogenesis. Western blotting and RT-qPCR analysis showed that NEF treatment decreased the expression of tyrosinase. Similarly, TRP-1 and TRP-2 levels were decreased, which were decreased significantly at compared with the untreated control. Also, NEF attenuated the IBMX mediated increase in the intracellular cAMP level and the phosphorylation of PKA. In conclusion, NEF significantly inhibited the expressions of melanogenesis through cAMP/PKA/CREB signaling pathways.

  • PDF

Inhibitory Effect of Pinus rigida × Pinus taeda on Melanogenesis in B16 F10 Cells

  • Woo-Jin Oh;Seo-Yoon Park;Tae-Won Jang;So-Yeon Han;Da-Yoon Lee;Se Chul Hong;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.56-56
    • /
    • 2023
  • The cone of Pinus rigida × Pinus taeda (PRT), a plant in the Pinaceae family, has long been used in traditional medicine to treat hemostasis, bruises, and burns. Previous research has shown that regulating oxidation-reduction reactions in reactive oxygen species can help inhibit melanogenesis, the process of melanin synthesis, which is a common target for addressing hyperpigmentation. Inhibiting tyrosinase is also known to be effective in this regard. Based on these findings, we conducted an investigation into the inhibitory effect of the ethyl acetate fraction of PRT (ERT) on melanogenesis in B16 F10 cells. We know that the expression levels of melanin biosynthesis-related proteins, including tyrosinase, TRP-1, and TRP-2, are regulated by MITF (microphthalmia-associated transcription factor) and cAMP, with cAMP affecting the activity of protein kinase A (PKA). PKA can reduce melanogenesis, and CREB reduces the phosphorylation of melanin-producing enzymes. In addition, the MAPK signaling pathway, composed of ERK, JNK, p38, and other factors, is also known to play a role in the inhibition of melanogenesis in melanocytes. Our immunoblotting results showed that ERT inhibited the expression of melanin production-related proteins (tyrosinase, TRP-1, TRP-2, and MITF) that were significantly increased by a-MSH treatment to promote melanin production. Furthermore, the phosphorylation levels of factors related to cAMP/PKA/CREB and MAPK signaling pathways were significantly reduced without affecting the total form. In conclusion, we believe that treatment with ERT can inhibit melanin synthesis by modulating the phosphorylation of cAMP/PKA/CREB and MAPK signaling pathways at the cellular level. These findings suggest the potential of ERT as a raw material for functional cosmetics and pharmaceuticals, thanks to its antioxidant activity and ability to inhibit melanogenesis. We thought that these findings of ERT as a natural plant resource will inspire further research and development in this area.

  • PDF

Inhibition of Food-derived Lactic Acid Bacterial Biofilm Formation Using Eisenia bicyclis-derived Nanoparticles (식품 유래 Biofilm 형성 유산균에 대한 대황(Eisenia bicyclis) 유래 Nanoparticle의 Biofilm 형성 저해)

  • Do Kyung Oh;Fazlurrahman Khan;Seul-Ki Park;Du-Min Jo;Kyung-Jin Cho;Geum-Jae Jeong;Yeon-Ju Sim;Jeong Mi Choi;Jae-Ho Woon;Young-Mog Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.2
    • /
    • pp.129-136
    • /
    • 2024
  • Lactic acid bacteria (LAB) growth in processed meat products produces slime. In this study, 10 different biofilm-forming LAB, including Leuconostoc mesenteroides, Lacticaseibacillus paracasei, Levilactobacillus brevis, Lactiplantibacillus plantarum, Leuconostoc citreum, Weissella viridescens, and Latilactobacillus sakei, were isolated from various meat products and identified based on 16S rRNA gene analysis. To inhibit biofilm formation by LABs, Eisenia bicycles methanolic extract (EB) and ethyl acetate soluble fraction (EA) were used as antibacterial and antibiofilm agents, respectively. Furthermore, EA and EB were employed to synthesize gold nanoparticles (AuNPs) such as EB-AuNPs and EA-AuNPs, which could serve as antibiofilm agents against the isolated LAB. These findings demonstrate that EA, EB-AuNPs, and EA-AuNPs exhibit significant antibacterial activity against the isolated LAB. Furthermore, EB-AuNPs reduced L. citreum biofilm production, whereas EA-AuNPs inhibited L. mesenteroides and L. brevis biofilm formation. The current results suggest that EB-AuNPs and EA-AuNPs can be used as nanomaterials to inhibit LAB that form biofilms on meat products.

Ethyl acetate fraction from Pteridium aquilinum ameliorates cognitive impairment in high-fat diet-induced diabetic mice (고지방 식이로 유도된 실험동물의 당뇨성 인지기능 장애에 대한 고사리 아세트산에틸 분획물의 개선효과)

  • Kwon, Bong Seok;Guo, Tian Jiao;Park, Seon Kyeong;Kim, Jong Min;Kang, Jin Yong;Park, Sang Hyun;Kang, Jeong Eun;Lee, Chang Jun;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.649-658
    • /
    • 2017
  • The potential of the ethyl acetate fraction from Pteridium aquilinum (EFPA) to improve the cognitive function in high-fat diet (HFD)-induced diabetic mice was investigated. EFPA-treatment resulted in a significant improvement in the spatial, learning, and memory abilities compared to the HFD group in behavioral tests, including the Y-maze, passive avoidance, and Morris water maze. The diabetic symptoms of the EFPA-treated groups, such as fasting glucose and glucose tolerance, were alleviated. The administration of EFPA reduced the acetylcholinesterase (AChE) activity and malondialdehyde (MDA) content in mice brains, but increased the acetylcholine (ACh) and superoxide dismutase (SOD) levels. Finally, kaempferol-3-o-glucoside, a major physiological component of EFPA, was identified by using high-performance liquid chromatography coupled with a hybrid triple quadrupole-linear ion trap mass spectrometer (QTRAP LC-MS/MS).

Antioxidative Activities of the Codonopsis lanceolata Extract in vitro and in vivo (더덕(Codonopsis lanceolata) 추출물의 in vitro 및 in vivo 항산화 효과)

  • Kim, Soo-Hyun;Chung, Mi-Ja;Jang, Hae-Dong;Ham, Seung-Shi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.2
    • /
    • pp.193-202
    • /
    • 2010
  • In vitro activities of Codonopsis lanceolata (CL) 70% ethanol extract and its fractions (hexane, chloroform, ethyl acetate, butanol and water) were examined by total polyphenol content, reducing power, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), 2,2-diphenyl-$\beta$-picrylhydrazyl (DPPH), and oxygen radical absorbance capacity (ORAC) assays. The ethyl acetate fraction from CL ethanol extract (CLEA) showed the highest total polyphenol content (22.7 mg/g) among five fractions, and also exhibited an excellent reducing power (0.42~1.27 at $250\sim1,000\;{\mu}g/mL$). CLEA at $100\sim400\;{\mu}g/mL$ concentrations had 27.7~70.3% of ABTS radical scavenging activity and the highest DPPH radical scavenging activity (81.6% at $400\;{\mu}g/mL$). CLEA had dominantly higher $ORAC_{{ROO}{\cdot}}$activity compared to other fractions. CLEA and butanol fraction had significantly higher $ORAC_{{OH}{\cdot}}$ activities than 70% ethanol extract, hexane, chloroform and water fractions. The CLEA exhibited the highest antioxidant activity in CL 70% ethanol extract and its fractions. Thus, effect of CLEA treatment on antioxidant gene expression under the oxidative stress conditions by a high fat diet in animal model was studied by microarray and RT-PCR methods. The 31 antioxidant genes were expressed but the genes were not up-regulated at least a two-fold by CLEA treatment. We concluded that CLEA does not have an indirect antioxidant effect but a direct antioxidant effect by up-regulation of antioxidant genes in high fat diet-induced obese mice.

Antioxidant capacity and hepatoprotective effect of ethyl acetate fraction from shoot of Aralia elata on alcohol-induced cytotoxicity (두릅 아세트산 에틸 분획물의 산화방지 효과 및 알코올에 대한 간세포 보호효과)

  • Kwon, Bong Seok;Park, Seon Kyeong;Kim, Jong Min;Kang, Jin Yong;Park, Sang Hyun;Kang, Jeong Eun;Lee, Chang Jun;Park, Su Bin;Yoo, Seul Ki;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.216-224
    • /
    • 2018
  • To evaluate physiological effect of Aralia elata, in vitro antioxidant activity and hepatic protective effects were investigated. Ethyl acetate fraction from Aralia elata (EFAE) had higher total phenolic content than other fractions (n-hexane, chloroform, and distilled water layers). EFAE also showed significantly greater radical scavenging activity against 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH), than other fractions. Moreover, EFAE showed dose-dependent inhibitory effect of malondialdehyde (MDA). Hepatoprotective effects of EFAE against ethanol- and $H_2O_2$-induced oxidative stress and cytotoxicity in H4IIE and HepG2 hepatic cells were examined using 2',7'-dichlorofluorescein diacetate (DCF-DA) and 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. The results showed that EFAE reduced cellular oxidative stress, and increased hepatic cell viability. In addition, EFAE inhibited ethanol-induced lipid accumulation in HepG2 cells. Finally, physiological substances of EFAE were analyzed using high performance liquid chromatography (HPLC), and the major bioactive compounds identified were 3,5-dicaffeoylquinic acid and chlorogenic acid.

Skin Whitening Effect of Ethyl Acetate Fraction of Adenophora triphylla var. japonica Sprout (잔대(Adenophora triphylla var. japonica)순 아세트산에틸 분획물의 피부 미백 효과)

  • Yoo, Seul Ki;Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Park, Sang Hyun;Kwon, Bong Seok;Lee, Chang Jun;Kang, Jeong Eun;Park, Su Bin;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Plant Resources
    • /
    • v.30 no.4
    • /
    • pp.352-363
    • /
    • 2017
  • To investigate skin-whitening effect of Adenophora triphylla var. japonica sprout extract, antioxidant activity, inhibitory effect on tyrosinase and melanin synthesis in B16/F10 melanoma cell were examined. Total phenolic content (246.25 mg GAE/g) and total flavonoid content (303.94 mg RE/g) of ethyl acetate fraction from Adenophora triphylla sprout (EFAT) showed the highest contents than other fractions (n-hexane, chloroform and distilled water). Antioxidant activities of EFAT has been evaluated using ABTS, DPPH radical scavenging activities, FRAP and inhibitory effect of lipid peroxidation. EFAT showed excellent radical scavenging activity and inhibitory effect on MDA production. Inhibitory effect of tyrosinase as a major enzyme of melanin synthesis was also measured. In these results, EFAT showed higher inhibitory effect against L-DOPA (51.27%) than L-tyrosine. $IC_{50}$ value on ${\alpha}-glucosidase$ was $41.93{\mu}g/ml$. In B16/F10 melanoma cells, EFAT inhibited melanin synthesis at $200{\mu}g/ml$ concentration (about 42% decrease). Finally, main physiological compounds of EFAT were identified as a rutin and a chlorogenic acid using high performance liquid chromatography.

A Determination of the Moisturizing Effect and Stability of a Cream Containing Lespedeza cuneata G. Don Extracts (비수리 추출물 함유 크림의 보습 효능 및 안정성 평가)

  • Lee, Hye Jin;Gu, Hyun A;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • In this study, the skin moisturing effect and stability of cream containing L. cuneata G. Don extract (ethyl acetate fraction) were evaluated. The skin hydrating effect of the cream containing extract was 1020% higher than the placebo cream, and the TWEL of the cream containing extracts was decreased to $7.7g/m^2h$ compared to the control ($10.2g/m^2$) and placebo cream ($8.9g/m^2$). The pH, viscosity, and absorbance were measured under the 4, 25, 37, $45^{\circ}C$ and the sun light during the 12 weeks. The pH change between cream containing extract and placebo cream did not show the significant difference under the 4, 25, 37, $45^{\circ}C$ except for the sun light. Both creams showed high decrease (about 59%) of viscosity at $45^{\circ}C$. However, there was no significant change under other conditions. The absorbance of the cream containing the extract and the placebo cream was decreased similarly at all conditions. This decrease in absorbance was relatively small compared to the decrease of absorbance of the extract in ethanol solution under the sun light (Fig. 7). In addition, any change in color or smell of the cream was not observed during the 12 weeks. Also physical changes as creaming and cohesion were not shown. These results indicate that the cream containing L. cuneata extract has the skin moisturizing effect and is relatively stable. Therefore, it is suggested that the ethyl acetate fraction of L. cuneata extract could be applicable to cosmetics as a new cosmetic material with its antioxidative and antibacterial activities reported previously.

Norsesquiterpenes from the Roots of White Kwao Krua (Pueraria mirifica) (태국칡(Pueraria mirifica)으로부터 norsesquiterpene의 분리 및 동정)

  • Kwon, Jung-Hwa;Cho, Jin-Gyeong;Park, Hee-Jung;Huh, Gyu-Won;Bang, Myun-Ho;Han, Min-Woo;Oh, Chang-Hwan;Ko, Sung-Kwon;Cho, Soo-Yeul;Chai, Kap-Yong;Kim, Jin-Ho;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.347-352
    • /
    • 2014
  • The roots of Pueraria mirifica were extracted with 70% aqueous ethyl alcohol and partitioned into ethyl acetate (EtOAc), n-butyl alcohol (BuOH), and $H_2O$ fractions, successively. From the EtOAc fraction, four norsesquiterpenes were isolated through the repeated silica gel, octadecyl silica gel and Sephadex LH-20 column chromatographies. On the basis of physicochemical and spectroscopic data including nuclear magnetic resonance (NMR), mass spectrometry, and infrared spectroscopy, the chemical structures were identified as megastigm-5-en-3,9-diol (1), linarionoside B (2), 3,5,6,9-tetrahydroxymegastigm-7-ene (3) and 3,4,9-trihydroxymegastigma-5,7-diene (4). Especially, the configuration of the anomer hydroxyl group was determined as a from the coupling constants of the anomer proton (J =8.0 Hz) in the $^1H$-NMR spectrum. These compounds were isolated for the first time from the roots of P. mirifica in this study.