• Title/Summary/Keyword: estrogen response element

Search Result 20, Processing Time 0.021 seconds

PKA-Mediated Stabilization of FoxH1 Negatively Regulates ERα Activity

  • Yum, Jinah;Jeong, Hyung Min;Kim, Seulki;Seo, Jin Won;Han, Younho;Lee, Kwang-Youl;Yeo, Chang-Yeol
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.67-71
    • /
    • 2009
  • Estrogen receptor ${\alpha}$ ($ER{\alpha}$) mediates the mitogenic effects of estrogen. $ER{\alpha}$ signaling regulates the normal growth and differentiation of mammary tissue, but uncontrolled $ER{\alpha}$ activation increases the risk to breast cancer. Estrogen binding induces ligand-dependent $ER{\alpha}$ activation, thereby facilitating $ER{\alpha}$ dimerization, promoter binding and coactivator recruitment. $ER{\alpha}$ can also be activated in a ligand-independent manner by many signaling pathways, including protein kinase A (PKA) signaling. However, in several $ER{\alpha}$-positive breast cancer cells, PKA inhibits estrogen-dependent cell growth. FoxH1 represses the transcriptional activities of estrogen receptors and androgen receptors (AR). Interestingly, FoxH1 has been found to inhibit the PKA-induced and ligand-induced activation of AR. In the present study, we examined the effects of PKA activation on the ability of FoxH1 to represses $ER{\alpha}$ transcriptional activity. We found that PKA increases the protein stability of FoxH1, and that FoxH1 inhibits PKA-induced and estradiol-induced activation of an estrogen response element (ERE). Furthermore, in MCF7 cells, FoxH1 knockdown increased the PKA-induced and estradiol-induced activation of the ERE. These results suggest that PKA can negatively regulate $ER{\alpha}$, at least in part, through FoxH1.

Regulation of Estrogen Receptor Under Hypoxia in Breast Cancer Cells

  • Lee, Young-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.55-74
    • /
    • 2008
  • Previously, we have shown that hypoxia, through HIF-1, induces ligand-independent $ER{\alpha}$ activation and the physical interaction of HIF-1 and $ER{\alpha}$. However, the effect of hypoxia on the transactivation of $ER{\beta}$ is not yet known. In the present study, we found that hypoxia activated the $ER{\beta}$-mediated transcriptional response in the HEK 293 cell line, as determined by the transient expression of$ER{\beta}$ and ER-responsive reporter plasmids. The hypoxia-induced estrogen response element-mediated transcriptional response was dependent on $ER{\beta}$ expression and was inhibited by the ER antagonist ICI 182,780. Transactivation of $ER{\beta}$ was induced by the expression of HIF-$1{\alpha}$ under normoxic conditions, as determined by the expression of oxygen-independent stable GFP-HIF-$1{\alpha}$. HIF-$1{\alpha}$-induced $ER{\beta}$ transactivation was abolished by the inhibition of HIF-$1{\alpha}$ activation. This was determined by using chemical inhibitors for the MAPK pathway. In addition, HIF-$1{\alpha}$ interacted with $ER{\beta}$ in a mammalian-two hybrid assay. We conclude that hypoxia activates $ER{\beta}$ in a ligand-independent manner, possibly through the interaction of HIF-$1{\alpha}$ and $ER{\beta}$.

  • PDF

Tectoridin, a Poor Ligand of Estrogen Receptor α, Exerts Its Estrogenic Effects via an ERK-Dependent Pathway

  • Kang, Kyungsu;Lee, Saet Byoul;Jung, Sang Hoon;Cha, Kwang Hyun;Park, Woo Dong;Sohn, Young Chang;Nho, Chu Won
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.351-357
    • /
    • 2009
  • Phytoestrogens are the natural compounds isolated from plants, which are structurally similar to animal estrogen, $17{\beta}$-estradiol. Tectoridin, a major isoflavone isolated from the rhizome of Belamcanda chinensis. Tectoridin is known as a phytoestrogen, however, the molecular mechanisms underlying its estrogenic effect are remained unclear. In this study we investigated the estrogenic signaling triggered by tectoridin as compared to a famous phytoestrogen, genistein in MCF-7 human breast cancer cells. Tectoridin scarcely binds to ER ${\alpha}$ as compared to $17{\beta}$-estradiol and genistein. Despite poor binding to ER ${\alpha}$, tectoridin induced potent estrogenic effects, namely recovery of the population of cells in the S-phase after serum starvation, transactivation of the estrogen response element, and induction of MCF-7 cell proliferation. The tectoridin-induced estrogenic effect was severely abrogated by treatment with U0126, a specific MEK1/2 inhibitor. Tectoridin promoted phosphorylation of ERK1/2, but did not affect phosphorylation of ER ${\alpha}$ at $Ser^{118}$. It also increased cellular accumulation of cAMP, a hallmark of GPR30-mediated estrogen signaling. These data imply that tectoridin exerts its estrogenic effect mainly via the GPR30 and ERK-mediated rapid nongenomic estrogen signaling pathway. This property of tectoridin sets it aside from genistein where it exerts the estrogenic effects via both an ER-dependent genomic pathway and a GPR30-dependent nongenomic pathway.

Steroid Hormone Receptor/Reporter Gene Transcription Assay for Food Additives and Contaminants

  • Jeong Sang-Hee;Cho Joon-Hyoung;Park Jong-Myung
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • Many of endocrine disrupting chemicals induce effects via interaction with hormone receptors and responsive elements in target cells. We investigated endocrine disrupting effects of some food additives and contaminants including BHA, BHT, ethoxyquin, propionic acid, sorbic acid, benzoic acid, CPM, aflatoxin B1, cadmium chloride, genistein, TCDD and PCBs in yeast transformants expressing human steroid hormone receptors along with steroid responsive elements. The response limit of genetically recombinant yeast to $17{\beta}$-estradiol, testosterone and progesterone was $1{\times}10^{-16},\;1{\times}10^{-12}\;and\;1{\times}10^{-13}M$, respectively. BHT induced weak transcriptional activity in estrogen sensitive yeast, while BHA and sorbic acid interacted weakly with androgen receptor/responsive element. CPM induced transcriptional activities in all types of yeasts sensitive to steroid hormones. Zearalenone and genistein induced high transcriptional activation in estrogen sensitive yeast with relative potencies almost $10^8$ folds lower than $17{\beta}$-estradiol. TCDD induced transcriptional activation weakly in estrogen- and progesterone- sensitive yeasts. This study elucidated that recombinant yeast is a sensitive and high-throughput system and can be used for the direct assessment on chemical interactions with steroid receptors and responsive elements. Also, the present study raises the requirement of evaluation on the endocrine disrupting effects of BHT, BHA, sorbic acid, CPM and TCDD for their transcription activity in yeast screening system though weak in intensity.

Studies on Chicken Production and Antioxidation Response by Dietary Supplementation of Isoflavone and Antioxidants (사료 내 Isoflavone 및 항산화 물질 첨가에 의한 양계 생산성과 항산화작용에 관한 연구)

  • Baek, Sang-Tae;An, Byeong-Gi;Gang, Chang-Won
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.31-43
    • /
    • 2005
  • Isoflavones are naturally occurring plant chemicals belonging to the 'phytoestrogen' class. The isoflavones are strikingly similar in chemical structure to natural estrogens. The phenolic ring is a key structural element of most compounds that bind to estrogen receptors. Dietary components that recently have received attention for their action as phytoestrogens are soy isoflavones. Soy products are the most significant dietary sources of isoflavones. Recently It is concerned clinical nutrition of isoflavone that is driven by reason of alternative sources of exogenous estrogen are constantly being needed. Estrogen therapy after the menopause offers protection from cardiovascular disease, reduces the extent of osteoporosis and relieves menopausal symptoms. Exogenous estrogen treatment is a fear of possible increased risk of developing breast cancer and because of side effects. Daily intake of soybean or soy food can affirmative effect to disease occurrence, that is based on mechanical investigation, experimental results of animals and human. Research into isoflavone is going on various field to relieve hormone - dependent disease such as cancer, menopausal symptom, cardiovascular disease and osteoporosis. Isoflavone is plenty in soybean meal, soy by-product, but only limited information is available on isoflavone efficacy into animal husbandry. Thus we conducted three experiments to investigate the effects of dietary isoflavone on productivities, antioxidative responses and bone metabolism in poultry. Dietary supplementation of isoflavone resulted in preventing the lipid oxidation of plasma and egg yolk. Dietary isoflavone improved bone development in egg-type growing chicks and broilers in terms of tibial strength. It was suggested that the proper use of feed additives such as isoflavone might provide means of improving antioxidative effect, skeletal strength, egg and eggshell quality.

  • PDF

Human Papillomavirus E6 Knockdown Restores Adenovirus Mediated-estrogen Response Element Linked p53 Gene Transfer in HeLa Cells

  • Kajitani, Koji;Ken-Ichi, Honda;Terada, Hiroyuki;Yasui, Tomoyo;Sumi, Toshiyuki;Koyama, Masayasu;Ishiko, Osamu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8239-8245
    • /
    • 2016
  • The p53 gene is inactivated by the human papillomavirus (HPV) E6 protein in the majority of cervical cancers. Treatment of HeLa S3 cells with siRNA for HPV E6 permitted adenovirus-mediated transduction of a p53 gene linked to an upstream estrogen response element (ERE). Our previous study in non-siRNA treated HHUA cells, which are derived from an endometrial cancer and express estrogen receptor ${\beta}$, showed enhancing effects of an upstream ERE on adenovirus-mediated p53 gene transduction. In HeLa S3 cells treated with siRNA for HPV E6, adenovirus-mediated transduction was enhanced by an upstream ERE linked to a p53 gene carrying a proline variant at codon 72, but not for a p53 gene with arginine variant at codon 72. Expression levels of p53 mRNA and Coxsackie/adenovirus receptor (CAR) mRNA after adenovirus-mediated transfer of an ERE-linked p53 gene (proline variant at codon 72) were higher compared with those after non-ERE-linked p53 gene transfer in siRNA-treated HeLa S3 cells. Western blot analysis showed lower ${\beta}$-tubulin levels and comparatively higher p53/${\beta}$-tubulin or CAR/${\beta}$-tubulin ratios in siRNA-treated HeLa S3 cells after adenovirus-mediated ERE-linked p53 gene (proline variant at codon 72) transfer compared with those in non-siRNA-treated cells. Apoptosis, as measured by annexin V binding, was higher after adenovirus-mediated ERE-linked p53 gene (proline variant at codon 72) transfer compared with that after non-ERE-linked p53 gene transfer in siRNA-treated cells.

Selective Estrogen Receptor Modulation by Larrea nitida on MCF-7 Cell Proliferation and Immature Rat Uterus

  • Ahn, Hye-Na;Jeong, Si-Yeon;Bae, Gyu-Un;Chang, Minsun;Zhang, Dongwei;Liu, Xiyuan;Pei, Yihua;Chin, Young-Won;Lee, Joongku;Oh, Sei-Ryang;Song, Yun Seon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.347-354
    • /
    • 2014
  • Larrea nitida is a plant that belongs to the Zygophyllaceae family and is widely used in South America to treat inflammatory diseases, tumors and menstrual pain. However, its pharmacological activity remains unclear. In this study we evaluated the property of selective estrogen receptor modulator (SERM) of Larrea nitida extracts (LNE) as a phytoestrogen that can mimic, modulate or disrupt the actions of endogenous estrogens, depending on the tissue and relative amount of other SERMs. To investigate the property of SERM of LNE, we performed MCF-7 cell proliferation assays, estrogen response element (ERE)-luciferase reporter gene assay, human estrogen receptor (hER) binding assays and in vivo uterotrophic assay. To gain insight into the active principles, we performed a bioassay-guided analysis of LNE employing solvents of various polarities and using classical column chromatography, which yielded 16 fractions (LNs). LNE showed high binding affinities for $hER{\alpha}$ and $hER{\beta}$ with $IC_{50}$ values of $1.20{\times}10^{-7}$ g/ml and $1.00{\times}10^{-7}$ g/ml, respectively. LNE induced $17{\beta}$-estradiol (E2)-induced MCF-7 cell proliferation, however, it reduced the proliferation in the presence of E2. Furthermore, LNE had an atrophic effect in the uterus of immature rats through reducing the expression level of progesterone receptor (PR) proteins. LN08 and LN10 had more potent affinities for binding on $hER{\alpha}$ and ${\beta}$ than other fractions. Our results indicate that LNE had higher binding affinities for $hER{\beta}$ than $hER{\alpha}$, and showed SERM properties in MCF-7 breast cancer cells and the rat uterus. LNE may be useful for the treatment of estrogen-related conditions, such as female cancers and menopause.

Estrogen receptor β promotes bladder cancer growth and invasion via alteration of miR-92a/DAB2IP signals

  • Ou, Zhenyu;Wang, Yongjie;Chen, Jinbo;Tao, Le;Zuo, Li;Sahasrabudhe, Deepak;Joseph, Jean;Wang, Long;Yeh, Shuyuan
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.10.1-10.11
    • /
    • 2018
  • Although early studies suggested that bladder cancer (BCa) is more prevalent in men than in women, muscle-invasive rates are higher in women than in men, suggesting that sex hormones might play important roles in different stages of BCa progression. In this work, we found that estrogen receptor beta ($ER{\beta}$) could increase BCa cell proliferation and invasion via alteration of miR-92a-mediated DAB2IP (DOC-2/DAB2 interacting protein) signals and that blocking miR-92a expression with an inhibitor could partially reverse $ER{\beta}$-enhanced BCa cell growth and invasion. Further mechanism dissection found that $ER{\beta}$ could increase miR-92a expression at the transcriptional level via binding to the estrogen-response-element (ERE) on the 5' promoter region of its host gene C13orf25. The $ER{\beta}$ up-regulated miR-92a could decrease DAB2IP tumor suppressor expression via binding to the miR-92a binding site located on the DAB2IP 3' UTR. Preclinical studies using an in vivo mouse model also confirmed that targeting this newly identified $ER{\beta}$/miR-92a/DAB2IP signal pathway with small molecules could suppress BCa progression. Together, these results might aid in the development of new therapies via targeting of this $ER{\beta}$-mediated signal pathway to better suppress BCa progression.

Ginsenoside Rg1 enhances the healing of injured tendon in achilles tendinitis through the activation of IGF1R signaling mediated by oestrogen receptor

  • Wu, Tianyi;Qi, Wenxiao;Shan, Haojie;Tu, Bin;Jiang, Shilin;Lu, Ye;Wang, Feng
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.526-535
    • /
    • 2022
  • Background: During the pathogenesis of tendinopathy, the chronic inflammation caused by the injury and apoptosis leads to the generation of scars. Ginsenoside Rg1 (Rg1) is extracted from ginseng and has anti-inflammatory effects. Rg1 is a unique phytoestrogen that can activate the estrogen response element. This research aimed to explore whether Rg1 can function in the process of tendon repair through the estrogen receptor. Methods: In this research, the effects of Rg1 were evaluated in tenocytes and in a rat model of Achilles tendinitis (AT). Protein levels were shown by western blotting. qRT-PCR was employed for evaluating mRNA levels. Cell proliferation was evaluated through EdU assay and cell migration was evaluated by transwell assay and scratch test assay. Results: Rg1 up-regulated the expression of matrix-related factors and function of tendon in AT rat model. Rg1 reduced early inflammatory response and apoptosis in the tendon tissue of AT rat model. Rg1 promoted tenocyte migration and proliferation. The effects of Rg1 on tenocytes were inhibited by ICI182780. Rg1 activates the insulin-like growth factor-I receptor (IGF1R) and MAPK signaling pathway. Conclusion: Rg1 promotes injured tendon healing in AT rat model through IGF1R and MAPK signaling pathway activation.

Analysis of Transcriptional Activity and Estrogen Responsiveness of Regulatory Elements in Chicken Ovalbumin Promoter (닭 오브알부민 프로모터의 길이에 따른 유전자 발현 활성 및 에스트로겐 반응성 분석)

  • Yang, Hyeon;Kim, Kyung-Woon;Kim, Jeom Sun;Woo, Jae-Seok;Lee, Hwi-Cheul;Choi, Hoonsung;Jung, Sun Keun;Sureshkumar, Shanmugam;Lee, Haesun;Oh, Keon Bong;Byun, Sung June
    • Korean Journal of Poultry Science
    • /
    • v.46 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Chickens have been considered as well-defined animal bioreactor. The optimized ovalbumin promoter is essential for recombinant protein production in transgenic chicken. Here we try to compare the activity and identify the effect of estrogen on ovalbumin promoter according to each promoter length with estrogen response element (ERE) existence. We cloned two (2.8 and 5.5 kb) ovalbumin promoters that the 5.5 kb contained the ERE but the 2.8 kb did not, and these two promoters were cloned to pGL4.11 vector. Additionally, we constructed another pGL4.11 vector containing of the 4.4 kb (with ERE) ovalbumin promoter deleted with 1 kb between ERE region and the 2.8 kb promoter. For reporter assay, HeLa, MES-SA, LMH/2A, and cEF cells were transfected with all the pGL4.11 vectors. The comparative analysis showed that the mutated 4.4 kb promoter has more potent activity than the 2.8 and 5.5 kb promoters in HeLa, MES-SA, and LMH/2A cells. However, there is no significant difference in cEFs. Also, these cells transfected with the mutated 4.4 kb promoter were treated with the $17{\beta}$-estradiol (0~3,000 nM) and HeLa, MES-SA, and LMH/2A cells showed estrogen responsibilities, but cEFs did not. Besides, the mutated 4.4 kb promoter has still higher activity than the 2.8 and 5.5 kb promoter, and there is no transcriptional induction effect in 2.8 kb promoter at 500 nM estrogen that is blood concentration of laying hens. Hence our study strongly suggested that the mutated 4.4 kb promoter is considered as one of the most efficient length for generating transgenic chicken.