• Title/Summary/Keyword: estimation performance

Search Result 6,225, Processing Time 0.028 seconds

3GPP GERAN Evolution System Employing High Order Modulation and Turbo Coding: TSC for Channel Estimation (터보코딩 및 고차변조를 적용하는 3GPP GERAN 진화 시스템: 채널 추정을 위한 TSC)

  • Lee, Jong-Hwan;Hwang, Eun-Sun;Choi, Byoung-Jo;Hwang, Seung-Hoon;Choi, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.599-606
    • /
    • 2008
  • In this paper, the channel estimation performance of proposed TSC (TSC-S) is investigated in terms of the BER and BLER performances when HSR is considered for GERAN evolution system. The performance is evaluated by the link level simulation and is compared with the other TSC proposal (TSC-E). Numerical results show that the performance employing the TSC-S is almost same to that using the TSC-E. In the case of cochannel interferences, the similar tendency is shown, when joint least square is adopted for channel estimation.

Air System Modeling for State Estimation of a Diesel Engine with Consideration of Dynamic Characteristics (동적특성을 고려한 디젤엔진 흡배기 시스템의 상태추정 모델)

  • Lee, Joowon;Park, Yeongseop;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.36-45
    • /
    • 2014
  • Model based control methods are widely used to improve the control performance of diesel engine air systems because the control results of the air system significantly affect the emission level and drivability. However, the model based control algorithm requires a lot of unmeasurable states which are hard to be measured in a mass production engine. In this study, an air system model of the diesel engine is proposed to estimate 11 unmeasurable states using only sensors equipped in a mass production engine. In order to improve the estimation performance in the transient condition, dynamic characteristics of the air system are analyzed and implemented as discrete filters. Turbine and compressor efficiency models are also proposed to overcome a limitation of the constant or look-up table based efficiency values. The proposed air system model was validated in steady state and transient conditions by real-time engine experiments. The maximum error of the estimation for 11 physical states was 11.7%.

Development of Statistical Model and Neural Network Model for Tensile Strength Estimation in Laser Material Processing of Aluminum Alloy (알루미늄 합금의 레이저 가공에서 인장 강도 예측을 위한 회귀 모델 및 신경망 모델의 개발)

  • Park, Young-Whan;Rhee, Se-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.93-101
    • /
    • 2007
  • Aluminum alloy which is one of the light materials has been tried to apply to light weight vehicle body. In order to do that, welding technology is very important. In case of the aluminum laser welding, the strength of welded part is reduced due to porosity, underfill, and magnesium loss. To overcome these problems, laser welding of aluminum with filler wire was suggested. In this study, experiment about laser welding of AA5182 aluminum alloy with AA5356 filler wire was performed according to process parameters such as laser power, welding speed and wire feed rate. The tensile strength was measured to find the weldability of laser welding with filler wire. The models to estimate tensile strength were suggested using three regression models and one neural network model. For regression models, one was the multiple linear regression model, another was the second order polynomial regression model, and the other was the multiple nonlinear regression model. Neural network model with 2 hidden layers which had 5 and 3 nodes respectively was investigated to find the most suitable model for the system. Estimation performance was evaluated for each model using the average error rate. Among the three regression models, the second order polynomial regression model had the best estimation performance. For all models, neural network model has the best estimation performance.

Integer Frequency Offset Estimation by Pilot Subset Selection for DRM+ Systems with CDD (순환 지연 다이버시티를 갖는 DRM+ 시스템에서 파일럿 집합 선택을 이용한 정수배 주파수 오차 추정 기법)

  • Kwon, Ki-Won;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.481-487
    • /
    • 2011
  • Cyclic delay diversity (CDD) is a simple transmit diversity technique for an OFDM system using multiple transmit antennas. However, the performance of post-FFT estimation, i.e., integer frequency offset (lFO) is deteriorated by high frequency selectivity introduced by CDD. In this paper, the IFO estimation scheme is proposed for OFDM-based DRM+ system with CDD. Based on the pilot subset partitioning, the proposed IFO estimation scheme reduces the effect of performance degradation caused by frequency selectivity in OFDM systems with CDD . The simulation results show that the performance of the proposed IFO estimator is significantly improved when compared to that of the conventional IFO estimator.

Performance Evaluation of Advanced Frequency Estimation Technique using 765kV Modeling Data (765kV 모델링 데이터에 의한 개선된 주파수 추정기법의 성능 평가)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.253-257
    • /
    • 2010
  • The frequency is an important operation parameter for the control, protection, and stability of a power system. The frequency as a key index of power quality can be indicative of system abnormal conditions and disturbances. Due to the sudden change in generation and loads or faults in power system, the frequency is supposed to deviate from its nominal value. It is essential that the frequency must be maintained very close to its nominal frequency. An accurate monitoring of the power frequency is essential to optimal operation and prevention for wide area blackout. As most conventional frequency estimation schemes are based on DFT filter, it has been pointed out that the gain error could cause defects when the frequency is deviated from nominal value. This paper presents an advanced frequency estimation technique using gain compensation to improve the performance of DFT filter based techniques. To evaluate performance of the proposed algorithm, the 765kV T/L system in Korea is simulated by EMTP-RV software. The proposed technique can reduce the gain error caused when the power system frequency deviates from nominal value.

Design of the Well-Conditioned Observer - A Linear Matrix Inequality Approach - (Well-Conditioned 관측기 설계 - A Linear Matrix Inequality Approach -)

  • Jung, Jong-Chul;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2004
  • In this paper, the well-conditioned observer for a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic uncertainties such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic uncertainties such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_{2}$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic uncertainties. In stochastic viewpoints, the estimation variance represents the robustness to the stochastic uncertainties and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

A Consideration on ML Blind Signal Estimation based on Finite-Alphabet Characteristic in QPSK Modulation (QPSK 신호 입력시스템에서의 유한 알파벹 기반 ML 블라인드 신호 추정 비교)

  • Kwon, S.M.;Kim, S.J.;Lee, J.M.;Kim, C.K.;Cheon, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.685-688
    • /
    • 2003
  • In this paper, a performance comparison between two blind signal estimation algorithms in a LTI channel is considered. The two algorithms, Iterative Least-Squares with Projection (ILSP) and a modified ILSP, are based on the finite-alphabet property of input symbols. This case typically arises in a multiple access system with a sensor array antenna at the receiving end. We start with the formulation of a maximum-likelihood (ML) estimation problem under an additive white Gaussian noise assumption. A blind ML estimator is derived with its iterative algorithm for calculation. Then we narrow down the consideration of this problem to QPSK case so that a modified algorithm is proposed for $\pi$/4-QPSK case. The modified version is compared with the original ILSP algorithm in terms of the rate of the convergence to global minima. A computer simulation shows that the modified algorithm gives a better performance. This result implies that the performance of the blind separation algorithms may be greatly improved by adopting a smart coding scheme with rich structure.

  • PDF

Measurement and Arrival Direction Estimation of Supersonic Flight Sonic Boom (초음속 비행체의 소닉붐 측정과 도래각 추정)

  • Ha, Jae-hyoun;Jung, Suk Young;Lee, Younghwan;Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.175-183
    • /
    • 2021
  • This paper studies measurement of sonic boom created by supersonic flight and its arrival angle estimation techniques. Since sonic boom propagates as an impulsive noise and includes infrasound frequency, we propose measurement instrumentation acquiring sonic boom signature without distortion. And we suggest the methodology for an arrival angle estimation with its performance analysis in accordance with sensor array configurations. The performance of our estimator is verified by comparing theoretical performance bound with statistics of its Monte-Carlo simulation results. Furthermore, we presents the analysis of the sonic boom measurement from real flight tests. This work provides an intuitive concept for sensor array configurations and measurement instrumentation.

Channel Transfer Function Estimation based on Delay and Doppler Profile for Underwater Acoustic OFDM Communication System

  • Shiho, Oshiro;Tomohisa, Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.96-102
    • /
    • 2023
  • In this paper, we proposed Channel Transfer Function estimation based on Delay and Doppler Profile for underwater acoustic OFDM communication system. It improved the estimation accuracy of the channel transfer function by linear time interpolation the change of Scattered Pilot (SP) insertion frequency in the time direction and the time by Delay and Doppler profile that analyzes the multipath situation of the channel investigated the performance of interpolation by simulation and report it. Previous works is inserted SP every 4 OFDM. It was effective under the environment without multipath, but it has observed that the effect of CTF compensation has been lowered in multipath channel condition. In addition to be better when inserted SP every 2 OFDM. But the amount of sending data will be decrease. Therefore, we conducted research to improve 4 OFDM with new interpolator. A computer simulation was performed as a comparison of SP inserted every 4 OFDM, SP inserted every 2 OFDM, and 4 OFDM with new interpolator. the performance of the proposed system is overwhelmingly improved, and the performance is slightly improved even 64 QAM.

Joint Estimation of TOA and DOA in IR-UWB System Using Sparse Representation Framework

  • Wang, Fangqiu;Zhang, Xiaofei
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.460-468
    • /
    • 2014
  • This paper addresses the problem of joint time of arrival (TOA) and direction of arrival (DOA) estimation in impulse radio ultra-wideband systems with a two-antenna receiver and links the joint estimation of TOA and DOA to the sparse representation framework. Exploiting this link, an orthogonal matching pursuit algorithm is used for TOA estimation in the two antennas, and then the DOA parameters are estimated via the difference in the TOAs between the two antennas. The proposed algorithm can work well with a single measurement vector and can pair TOA and DOA parameters. Furthermore, it has better parameter-estimation performance than traditional propagator methods, such as, estimation of signal parameters via rotational invariance techniques algorithms matrix pencil algorithms, and other new joint-estimation schemes, with one single snapshot. The simulation results verify the usefulness of the proposed algorithm.