• Title/Summary/Keyword: estimation of water quality

Search Result 470, Processing Time 0.025 seconds

A Random Sampling Method in Estimating the Mean Areal Precipitation Using Kriging

  • Lee, Sang-Il
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.45-55
    • /
    • 1994
  • A new method to estimate the mean areal precipitation using kriging is developed. Urlike the conventional approach, points for double and quadruple numerical integrations in the kriging equation are selected randomly, given the boundary of area of interest. This feature eliminates the conventional approach's necessity of dividing the area into subareas and calculating the center of each subarea, which in turn makes the developed method more powerful in the case of complex boundaries. The algorithm to select random points within an arbitrary boundary, based on the theory of complex variables, is described. The results of Monte Carlo simulation showed that the error associated with estimation using randomly selected points is inversely proportional to the square root of the number of sampling points.

  • PDF

Estimation on Corrosion of Reinforcing bar in Antiwashout Underwater Concrete (수중불분리성 콘크리트 중의 철근부식 평가)

  • 문한영;김성수;김홍삼;김종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.447-450
    • /
    • 2000
  • Recently, antiwashout underwater concrete has used for underwater structure such as high strength massive concrete structures. When, concrete is placed in seawater the quality and durability of concrete could be doubt to especcially because the amount of cement placed in the concrete can be diminished by flowing seawater. In this study, antiwashout underwater concrete mixed with mineral admixtures for improvement of properties was placed in air, water, and salt water. Half-cell potential and current density was of specimens which made under different conditions measured for estimating corrosion degree. The experimental results demostrate that corrosion resistantce in saltwater was little and mineral admixtures improved properties of concrete.

  • PDF

Estimation of Agricultural Water Quality Using Classification Maps of Water Chemical components in Seonakdong River Watershed (수질성분 분포도를 이용한 서낙동강 수계 농업용수 수질평가)

  • Ko, Jee-Yeon;Lee, Jae-Sang;Kim, Choon-Song;Jeong, Ki-Yeol;Choi, Young-Dae;Yun, Eul-Soo;Park, Seong-Tae;Kang, Hwang-Won;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.138-146
    • /
    • 2006
  • To understand the status of water quality and work out a suitable countermeasures in Seonakdong watershed which has poor agro- environmental condition because of severe point and non-point source pollution by popularized city and near sea, we investigated the pollution sources and water quality from '03 and '05 and the result were mapped with GIS and RS for end-users's convenient comprehense and conjunction of water quality and geological data. The most degraded tributary was Hogeo stream which was affected directly by highly popularized Gimhae city, the main pollution source of the watershed. The pollution of tributaries in watershed increased the T-N of main body that reached over 4 mg/L during dry season. Pyeonggang stream and the lower part of main water way were suffered from high salt contents induced near sea and the EC value of those area were increased to 2.25 dS/m. The delivered loads of T-N and T-P were largest in Joman river as 56% and 61% of total delivered loads 1mm tributaries because of lots of stream flow. When Management mandate for irrigation water in Seonakdong river watershed was mapped for estimating integrated water quality as the basis of classification of EC and T-N contents in water, Hogeo and Shineo catchments were showed the requiring countermeasures none against nutrients hazard and Pyeonggang catchment was the vulnerable zone against nutrients and salts hazard. As the result, Seonakdong watershed had very various status of water quality by characteristics of catchments and countermeasures for improving water quality and crop productivity safely should changed depend on that.

Assessment of Missing Data Estimation with Rain Radar (강우레이더를 활용한 강수량 결측 보정에 관한 연구)

  • Kim, Tae Hyung;Lee, Jong-Hyeon;Lee, Yeong-Gon;Jang, Seung-Yeong;Choe, Gyu-Hyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.310-310
    • /
    • 2018
  • Generally, precipitation measurement were conducted with various authrities. Among these, the MOLIT conduct the hydrological survey for the water resource management such as flood and low-flow forecasting, drought countermeasure, streamflow management. There is totally 424 observatory were existed and each precipitation measurement were obtained and quality assuranced with 10-min interval. It could be arranged or estimated with nearby observatory and radar reflectivity when the total amount of precipitation are existed. The objective of the study is therefore to suggest the method to estimate missing data with rain radar reflectivity. To validate suggested method, 50 observartory were obtained, and the efficiency were analyzed with estimated and observed precipitation. As the result of the study, the suggested method has reliability, and can be used as a method for quality assurance.

  • PDF

Estimation of Korean Paddy Field Soil Properties Using Optical Reflectance (광반사를 이용한 한국 논 토양 특성 추정)

  • Chung, Sun-Ok;Jung, Ki-Youl;Sudduth, Kenneth A.
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.33-39
    • /
    • 2011
  • An optical sensing approach based on diffuse reflectance has shown potential for rapid and reliable on-site estimation of soil properties. Important sensing ranges and the resulting regression models useful for soil property estimation have been reported. In this study, a similar approach was applied to investigate the potential of reflectance sensing in estimating soil properties for Korean paddy fields. Soil cores up to a 65-cm depth were collected from 42 paddy fields representing 14 distinct soil series that account for 74% of the total Korean paddy field area. These were analyzed in the laboratory for several important physical and chemical properties. Using air-dried, sieved soil samples, reflectance data were obtained from 350 to 2500 nm on a 3 nm sampling interval with a laboratory spectrometer. Calibrations were developed using partial least squares (PLS) regression, and wavelength bands important for estimating the measured soil properties were identified. PLS regression provided good estimations of Mg ($R^2$ = 0.80), Ca ($R^2$ = 0.77), and total C ($R^2$ = 0.92); fair estimations of pH, EC, $P_2O_5$, K, Na, sand, silt, and clay ($R^2$ = 0.59 to 0.72); and poor estimation of total N. Many wavelengths selected for estimation of the soil properties were identical or similar for multiple soil properties. More important wavelengths were selected in the visible-short NIR range (350-1000 nm) and the long NIR range (1800-2500 nm) than in the intermediate NIR range (1000-1800 nm). These results will be useful for design and application of in-situ close range sensors for paddy field soil properties.

The Simulation of Nutrients using SWAT Model and its Application to Estimate Delivery Ratio (SWAT 모형을 이용한 영양물질 모의 및 유달율 추정에의 적용)

  • Choi, Daegyu;Shin, Hyun Suk;Yoon, Young Sam;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.375-385
    • /
    • 2009
  • The estimation of delivery ratio is a essential part of Korean Total Maximum Daily Loads (TMDL) procedure which needs a number of observed stream flow and pollutants data. If observed data were not sufficient, researchers have to find other alternatives. One of them is to make indirect data by using watershed models, such as Soil and Water Assessment Tool (SWAT) and Hydrological Simulation Program - FORTRAN (HSPF) and so on. In this study, indirect daily data was made by using SWAT model. To build the Byongseong-SWAT model accurately, crop cultures are reflected by handling the MGT.file in SWAT model. Especially, mass of manure and schedule of crop culture are inputted through investigating domestic research papers as well as fieldwork. After calibrating SWAT model in comparison with the 22-years flow and pollutants observed outlet data, the delivery ratio of Byongseong watershed is calculated by using daily simulated data during 2004-2007. Empirical equations for delivery ratio through multi-regression analysis are developed by using meteorological and physical factors such as flow, watershed area, stream length, catchment slope, curve number (CN) and subbasin's pollutant discharge loads.

Development of the Annual Runoff Estimation Model (연유출량 추정모형 개발)

  • 김양수;정상만;서병하
    • Water for future
    • /
    • v.24 no.3
    • /
    • pp.95-104
    • /
    • 1991
  • The study was focused on developing a new model to estimate annual runoff. This model can be used to estimate the available water resources for ungaged catchments for long-term water resources development planning. Data used in the model development were daily rainfall and daily runoff of the sample basin with record length from 1945 to 1988 years in Korea. The sample basin selected by consideration whether the flow is virgin and quality of discharge data is good. As a result, 46 stage gaging station were selected. Annual runoff was determined by sum of daily runoff calculated by daily stage data of the sample basin. Also, the annual mean precipitation by using daily rainfall data was estimated and the annual runoff ratio for each sample basin was calculated, and the annual mean runoff ratio was estimated. The linear regression model was proposed and calibrated using auunal mean precipitation values and geomorphological characteristics of the basins. To verify reasonableness of this model, the regression model was applied to the gaging stations which have historical data.

  • PDF

Uncertainty analysis of quantitative rainfall estimation process based on hydrological and meteorological radars (수문·기상레이더기반 정량적 강우량 추정과정에서의 불확실성 분석)

  • Lee, Jae-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.439-449
    • /
    • 2018
  • Many potential sources of bias are used in several steps of the radar-rainfall estimation process because the hydrological and meteorological radars measure the rainfall amount indirectly. Previous studies on radar-rainfall uncertainties were performed to reduce the uncertainty of each step by using bias correction methods in the quantitative radar-rainfall estimation process. However, these studies do not provide comprehensive uncertainty for the entire process and the relative ratios of uncertainty between each step. Consequently, in this study, a suitable approach is proposed that can quantify the uncertainties at each step of the quantitative radar-rainfall estimation process and show the uncertainty propagation through the entire process. First, it is proposed that, in the suitable approach, the new concept can present the initial and final uncertainties, variation of the uncertainty as well as the relative ratio of uncertainty at each step. Second, the Maximum Entropy Method (MEM) and Uncertainty Delta Method (UDM) were applied to quantify the uncertainty and analyze the uncertainty propagation for the entire process. Third, for the uncertainty quantification of radar-rainfall estimation at each step, two quality control algorithms, two radar-rainfall estimation relations, and two bias correction methods as post-processing through the radar-rainfall estimation process in 18 rainfall cases in 2012. For the proposed approach, in the MEM results, the final uncertainty (from post-processing bias correction method step: ME = 3.81) was smaller than the initial uncertainty (from quality control step: ME = 4.28) and, in the UDM results, the initial uncertainty (UDM = 5.33) was greater than the final uncertainty (UDM = 4.75). However uncertainty of the radar-rainfall estimation step was greater because of the use of an unsuitable relation. Furthermore, it was also determined in this study that selecting the appropriate method for each stage would gradually reduce the uncertainty at each step. Therefore, the results indicate that this new approach can significantly quantify uncertainty in the radar-rainfall estimation process and contribute to more accurate estimates of radar rainfall.

Assessment & Estimation of Water Footprint on Soybean and Chinese Cabbage by APEX Model (APEX 모형을 이용한 밭작물(콩, 배추) 물발자국 영향 평가)

  • Hur, Seung-Oh;Choi, Soonkun;Hong, Seong-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.159-165
    • /
    • 2019
  • BACKGROUND: The water footprint (WF) is an indicator of freshwater use that appears not only at direct water use of a consumer or producer, but also at the indirect water use. As an indicator of 'water use', the water footprint includes the green, blue, and grey WF, and differs from the classical measure of 'water withdrawal' because of green and grey WF. This study was conducted to assess and estimate the water footprint of the soybean and Chinese cabbage. METHODS AND RESULTS: APEX model with weather data, soil and water quality data from NAS (National Institute of Agricultural Sciences), and farming data from RDA (Rural Development Administration) was operated for analyzing the WF of the crops. As the result of comparing the yield estimated from APEX with the yield extracted from statistic data of each county, the coefficients of determination were 0.83 for soybean and 0.97 for Chinese cabbage and p-value was statistically significant. The WFs of the soybean and Chinese cabbage at production procedure were 1,985 L/Kg and 58 L/Kg, respectively. This difference may have originated from the cultivation duration. The WF ratios of soybean were 91.1% for green WF and 8.9% for grey WF, but the WF ratios of Chinese cabbage were 41.5% for green WF and 58.5% for grey WF. CONCLUSION: These results mean that the efficiency of water use for soybean is better than that for Chinese cabbage. The results could also be useful as an information to assess environmental impact of water use and agricultural farming on soybean and Chinese cabbage.

Application of Load Duration Curve and Estimation of Delivery Ratio by Flow Durations Using Discharge-Load Rating Curve at Jiseok Stream Watershed (유량-부하량관계식을 이용한 지석천 유역의 부하지속곡선 적용 및 유황별 유달율 산정)

  • Park, Jinhwan;Kim, Kapsoon;Hwang, Kyungsup;Lee, Yongwoon;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.523-530
    • /
    • 2013
  • This study has been carried out to clarify the characteristics of discharge and pollutant loading according to flow conditions at jiseok stream watershed (JSW). A flow rate and pollutant load in the study watershed were estimated by equation of stage-discharge and discharge-loads rating curve. By using the methods above, I've evaluated the water quality (WQ) of the JSW if it is satisfied with the standard target. I've collected the data of BOD and T-P from the JSW every 8 days for the duration of 12 months. And then, I've schematized the data upon the load duration curve and the results showed me that the WQ of JSW was satisfied with the standard target. I've also collected the same data every each day for the duration of 12 months from JSW and have schematized the data again. And the results showed that it also was satisfied with the standard target. To be concluded, I've determined that point pollution sources of JSW gives more significant impacts to the WQ than non-point pollution sources of JSW and hence, as time goes, point pollution sources will keep depriciating the WQ of JSW. Therefore, further efforts will be required to JSW to maintain the WQ.