• Title/Summary/Keyword: estimation methods

Search Result 5,507, Processing Time 0.043 seconds

Estimation of Seasonal Cointegration under Conditional Heteroskedasticity

  • Seong, Byeongchan
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.615-624
    • /
    • 2015
  • We consider the estimation of seasonal cointegration in the presence of conditional heteroskedasticity (CH) using a feasible generalized least squares method. We capture cointegrating relationships and time-varying volatility for long-run and short-run dynamics in the same model. This procedure can be easily implemented using common methods such as ordinary least squares and generalized least squares. The maximum likelihood (ML) estimation method is computationally difficult and may not be feasible for larger models. The simulation results indicate that the proposed method is superior to the ML method when CH exists. In order to illustrate the proposed method, an empirical example is presented to model a seasonally cointegrated times series under CH.

Motion Estimation Method Based on Correlations of Motion Vectors for Multi-view Video Coding (다시점 비디오 부호화를 위한 움직임 벡터들의 상관성을 이용한 움직임 추정 기법)

  • Yoon, Hyo-Sun;Kim, Mi-Young
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.10
    • /
    • pp.1131-1141
    • /
    • 2018
  • Motion Estimation which is used to reduce the redundant data plays an important role in video compressions. However, it requires huge computational complexity of the encoder part. And therefore many fast motion estimation methods has been developed to reduce complexity. Multi-view video is obtained by using many cameras at different positions and its complexity increases in proportion to the number of cameras. In this paper, we proposed a fast motion estimation method for multi-view video. The proposed method predicts a search start point by using correlated candidate vectors of the current block. According to the motion size of the start search point, a search start pattern of the current block is decided adaptively. The proposed method proves to be about 2 ~ 5 times faster than existing methods while maintaining similar image quality and bitrates.

Edge-Preserving and Adaptive Transmission Estimation for Effective Single Image Haze Removal

  • Kim, Jongho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.21-29
    • /
    • 2020
  • This paper presents an effective single image haze removal using edge-preserving and adaptive transmission estimation to enhance the visibility of outdoor images vulnerable to weather and environmental conditions with computational complexity reduction. The conventional methods involve the time-consuming refinement process. The proposed transmission estimation however does not require the refinement, since it preserves the edges effectively, which selects one between the pixel-based dark channel and the patch-based dark channel in the vicinity of edges. Moreover, we propose an adaptive transmission estimation to improve the visual quality particularly in bright areas like sky. Experimental results with various hazy images represent that the proposed method is superior to the conventional methods in both subjective visual quality and computational complexity. The proposed method can be adopted to compose a haze removal module for realtime devices such as mobile devices, digital cameras, autonomous vehicles, and so on as well as PCs that have enough processing resources.

Deep Learning Based Monocular Depth Estimation: Survey

  • Lee, Chungkeun;Shim, Dongseok;Kim, H. Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.297-305
    • /
    • 2021
  • Monocular depth estimation helps the robot to understand the surrounding environments in 3D. Especially, deep-learning-based monocular depth estimation has been widely researched, because it may overcome the scale ambiguity problem, which is a main issue in classical methods. Those learning based methods can be mainly divided into three parts: supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning trains the network from dense ground-truth depth information, unsupervised one trains it from images sequences and semi-supervised one trains it from stereo images and sparse ground-truth depth. We describe the basics of each method, and then explain the recent research efforts to enhance the depth estimation performance.

Analyzing Influence of Outlier Elimination on Accuracy of Software Effort Estimation (소프트웨어 공수 예측의 정확성에 대한 이상치 제거의 영향 분석)

  • Seo, Yeong-Seok;Yoon, Kyung-A;Bae, Doo-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.589-599
    • /
    • 2008
  • Accurate software effort estimation has always been a challenge for the software industrial and academic software engineering communities. Many studies have focused on effort estimation methods to improve the estimation accuracy of software effort. Although data quality is one of important factors for accurate effort estimation, most of the work has not considered it. In this paper, we investigate the influence of outlier elimination on the accuracy of software effort estimation through empirical studies applying two outlier elimination methods(Least trimmed square regression and K-means clustering) and three effort estimation methods(Least squares regression, Neural network and Bayesian network) associatively. The empirical studies are performed using two industry data sets(the ISBSG Release 9 and the Bank data set which consists of the project data collected from a bank in Korea) with or without outlier elimination.

A Study on the Standard of Cost Estimation in the Construction of Pavement and Maintenance (도로포장 및 유지공사 표준품셈 개정 방법에 대한 연구)

  • Jung, Dae-Kwon;Tae, Yong-Ho;Ahn, Bang-Ryul;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.85-94
    • /
    • 2009
  • In cost estimation of construction, several methods including quantity-per-unit costing, job costing, unit cost estimation and lumpsum estimation are being utilized in Korea. Among them, a Quantity-per-unit Costing Method is used as a standard of cost estimation in public and private works. This paper presents the realistic job-costing method on all road construction tasks through statistical analyses with field survey data to solve the problems induced by the existing quantity-per-unit costing method. Furthermore, it was found that the newly developed job costing method is able to produce a simple costing procedure and a more actual construction cost estimation by a case study, which was performed to compare particular construction costs produced by two different methods, existing quantity-per-unit costing and newly developed job costing. These methods is compared by Case-study about sub-base. In the case of Job costing method, the estimate is shorter than the other case about 50% and can make up for the weak point about instrument in the current Standard of cost estimation. And it can be depict by Job Costing method about progress of work for using by a plan about construction management.

  • PDF

Investigation of shear effects on the capacity and demand estimation of RC buildings

  • Palanci, Mehmet;Kalkan, Ali;Sene, Sevket Murat
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1021-1038
    • /
    • 2016
  • Considerable part of reinforced concrete building has suffered from destructive earthquakes in Turkey. This situation makes necessary to determine nonlinear behavior and seismic performance of existing RC buildings. Inelastic response of buildings to static and dynamic actions should be determined by considering both flexural plastic hinges and brittle shear hinges. However, shear capacities of members are generally neglected due to time saving issues and convergence problems and only flexural response of buildings are considered in performance assessment studies. On the other hand, recent earthquakes showed that the performance of older buildings is mostly controlled by shear capacities of members rather than flexure. Demand estimation is as important as capacity estimation for the reliable performance prediction in existing RC buildings. Demand estimation methods based on strength reduction factor (R), ductility (${\mu}$), and period (T) parameters ($R-{\mu}-T$) and damping dependent demand formulations are widely discussed and studied by various researchers. Adopted form of $R-{\mu}-T$ based demand estimation method presented in Eurocode 8 and Turkish Earthquake Code-2007 and damping based Capacity Spectrum Method presented in ATC-40 document are the typical examples of these two different approaches. In this study, eight different existing RC buildings, constructed before and after Turkish Earthquake Code-1998, are selected. Capacity curves of selected buildings are obtained with and without considering the brittle shear capacities of members. Seismic drift demands occurred in buildings are determined by using both $R-{\mu}-T$ and damping based estimation methods. Results have shown that not only capacity estimation methods but also demand estimation approaches affect the performance of buildings notably. It is concluded that including or excluding the shear capacity of members in nonlinear modeling of existing buildings significantly affects the strength and deformation capacities and hence the performance of buildings.

Statistical Estimation and Algorithm in Nonlinear Functions

  • Jea-Young Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.135-145
    • /
    • 1995
  • A new algorithm was given to successively fit the multiexponential function/nonlinear function to data by a weighted least squares method, using Gauss-Newton, Marquardt, gradient and DUD methods for convergence. This study also considers the problem of linear-nonlimear weighted least squares estimation which is based upon the usual Taylor's formula process.

  • PDF

Exploring the Accuracy and Methods of Estimation on Base Physical Quantities (기본물리량 어림의 정확성 및 방법에 대한 탐색)

  • Song, Jin-Woong;Kim, Hae-Sun
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.1
    • /
    • pp.76-88
    • /
    • 2001
  • This study explored people's accuracy and methods of estimating some base physical quantities, i.e. length, mass, time and temperature. A total of 40 members, ranging from freshmen to professors, of a physics education department of a local university were asked to make two different kinds of estimations, intuitive and operational, on two sets of objects. For intuitive estimation, they were asked to make estimations on four given objects (length - wood chopsticks, mass - rubber eraser, time electric fan, temperature - water in a cup) as soon as they faced with the objects, usually within a few seconds of seeing. For operational estimation, they were allowed to make estimations on a different set of objects (length - plastic rod, mass - lock, time - simple pendulum, temperature - water in a cup) with enough time and they could apply various available methods (e.g. using pencil to estimate the object's length, counting their own pulse rate to estimate time) for the estimation. The findings of this study can be summarized as follows: (1) for length, mass and temperature the intuitive estimations were better performed while for the time estimation the result was the reverse; (2) there was no positive relationship between the amount of physics experience and the accuracy of the estimation; (3) in general, people's accuracy of the length estimation was best performed while their mass estimation was worst performed; (4) people used their own various methods for estimation, esp. using nearby objects around them and applying mental units which have convenient values (e.g. 30cm, 50cm, 1kg, 1 Keun, 1 second).

  • PDF

A Survey on State Estimation of Nonlinear Systems (비선형 시스템의 상태변수 추정기법 동향)

  • Jang, Hong;Choi, Su-Hang;Lee, Jay Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.277-288
    • /
    • 2014
  • This article reviews various state estimation methods for nonlinear systems, particularly with a perspective of a process control engineer. Nonlinear state estimation methods can be classified into the following two categories: stochastic approaches and deterministic approaches. The current review compares the Bayesian approach, which is mainly a stochastic approach, and the MHE (Moving Horizon Estimation) approach, which is mainly a deterministic approach. Though both methods are reviewed, emphasis is given to the latter as it is particularly well-suited to highly nonlinear systems with slow sampling rates, which are common in chemical process applications. Recent developments in underlying theories and supporting numerical algorithms for MHE are reviewed. Thanks to these developments, applications to large-scale and complex chemical processes are beginning to show up but they are still limited at this point owing to the high numerical complexity of the method.