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Abstract

This paper presents an effective single image haze removal using edge-preserving and adaptive 

transmission estimation to enhance the visibility of outdoor images vulnerable to weather and environmental 

conditions with computational complexity reduction. The conventional methods involve the time-consuming 

refinement process. The proposed transmission estimation however does not require the refinement, since it 

preserves the edges effectively, which selects one between the pixel-based dark channel and the patch-based 

dark channel in the vicinity of edges. Moreover, we propose an adaptive transmission estimation to improve

the visual quality particularly in bright areas like sky. Experimental results with various hazy images represent 

that the proposed method is superior to the conventional methods in both subjective visual quality and 

computational complexity. The proposed method can be adopted to compose a haze removal module for real-

time devices such as mobile devices, digital cameras, autonomous vehicles, and so on as well as PCs that have 

enough processing resources.
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1. Introduction

Outdoor images are rapidly adopted in various fields such as smart transportation systems, (unmanned) 

aerial or drone image applications, video surveillance systems, and autonomous vehicles, etc. They are 

vulnerable to weather and environmental conditions such as fog, haze, smog, and so on. Additionally, the light 

reflected from the object is synthesized or scattered with the color of the suspended particles in the air, such 

that the contrast distortion or the color change of the image obtained through the camera is generated [1]. The 

improvement of the image visibility is strongly required for efficient implementation of a computer vision 

system using outdoor images. Simultaneously an appropriate level of computational complexity is needed to 

ensure the usefulness as the preprocessing [2]. Various haze removal methods have been studied to satisfy 

those conditions, and they can be classified into the plural image methods in the early stage and the single 

image methods actively studied recently.

As a plural image method, Schechner et al. proposed a haze removal method in [3] using the fact that haze 
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values of two images acquired with different polarization filters at the same location are different. In spite of

its good haze removal performance, it is limited for full-scale application due to the strong constraint that 

different polarization filters should be used at the same location even in a temporally changing hazy

environment. Narasimhan et al. proposed a haze removal method in [4] based on the depth information 

obtained by using images taken under different weather conditions at the same location instead of polarization 

filters. Kopf et al. obtained depth information using the global positioning system (GPS) information 

embedded in the camera rather than an image, and proposed the haze removal method in [5] by calculating the 

haze concentration according to it.

In recent decades, the single image haze removal methods have been actively studied to consider the actual 

application of outdoor images [6-11]. They propose the approaches to restore the image from which the haze 

has been removed by satisfying additional assumptions and conditions [12-17]. The optical model widely used 

in the single image haze removal techniques are written as

I(x) = J(x)t(x) + A(1 – t(x))                              (1)

where x is the pixel coordinates in vector form, I(x) is the observed hazy image acquired by a camera with 

three color channels, J(x) is the true radiance, i.e., the haze-free image to be restored, of the scene point imaged 

at x, the atmospheric light A is a color value representing the ambient light in image area when t(x) = 0, and 

the scene transmission t(x), tightly related to the depth of each pixel, acts as a mixing coefficient between the 

scene radiance J(x) and the atmospheric light A. The transmission modelled by t(x) = e-βd(x) denotes the 

percentage of light received by the camera from J(x), and d(x) is the distance from the scene point to the 

camera and β is the attenuation coefficient of the atmosphere. Generally, β is dependent on wavelength and 

therefore t(x) is different per color channel [3]. This dependency has been assumed negligible in previous 

single image dehazing methods including this work to reduce the number of unknowns and we follow this 

assumption.

Single image haze removal can be regarded as a problem of estimating A and t(x) from I(x), and using them 

to restore J(x). Based on the optical model of (1), Tan’s method focuses on enhancing the visibility of the 

image in [7]. The transmission t(x) in a local patch is estimated by maximizing the visibility under a constraint 

that the intensity of J(x) is less than the intensity of A, and then the Markov Random Fields (MRF) model is 

used to further regularize the result. This approach is able to greatly unveil details and structures from hazy 

images. However, the output images usually tend to have large saturation values, and they may contain halo 

effects near the depth discontinuities. Fattal proposes an approach in [8] based on Independent Component 

Analysis (ICA). The albedo of a local patch is assumed to be a constant, and thus all vectors of J(x) in the 

patch have the same direction, which is estimated by ICA by assuming that the statistics of the surface shading 

||J(x)|| and the transmission t(x) are independent in the patch. The MRF model guided by the input color image 

is applied to extrapolate the solution to the whole image. This approach is physics-based and can produce a 

natural haze-free image together with a good depth information. However, any lack of variation or low signal-

to-noise ratio (often in dense haze region) makes the statistics unreliable, since the statistical independent 

components vary significantly. Moreover, as the statistics is based on color information, it is invalid for 

grayscale images and it is difficult to handle dense haze that is colorless.

Through observation of haze-free images, He et al. proposed a dark channel prior (DCP) in [9] for image 

dehazing, that is, the dark channel of a haze-free image in each pixel is assumed to be zero. The transmission 

t(x) can be estimated on the basis of the DCP. To reduce the halo effect caused by the local minimum operation, 

the soft matting optimization method refining the transmission. The soft matting is an iterative optimization 
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process that requires a lot of computations, even though this method achieves a state-of-the-art haze removal 

performance. Moreover, for the bright sky regions, the DCP is not valid, and thus the contour artifacts can 

sometimes be observed because of the failure of the DCP in those regions. 

To improve the DCP-based method, we develop a direct transmission estimation without a refinement 

process, which greatly reduces the processing time. When computing the dark channel in the edge area, it is 

obtained through the patch-level computation so that our method can avoid over-saturation while preserving 

edges. An adaptive transmission estimation is proposed to compensate for sky regions. In this paper, we 

propose a novel framework for single image haze removal, in which both the computation time and quality 

performance are improved compared to the conventional DCP-based method. The proposed method includes

two novel contributions as explained below:

• To reduce the halo effect caused by the local patch operation, a novel method called edge-preserving 

transmission estimation is developed for dark channel computation. This results in a direct estimation of 

the fine transmission with an edge-preserving property. Compared to the computationally expensive 

refinement method in [9], our method drastically reduce the computing time for the fine transmission 

without any refinement process.

• An adaptive transmission estimation is proposed to compensate for the failure of the DCP in the sky 

regions. Modelled by a Gaussian function, it is the same as the conventional DCP for the pixels in non-

sky regions while it can produce a more accurate prior for pixels in the sky and other bright regions.

The rest of the paper is organized as follows. In Section 2, related works of DCP are briefly reviewed, and 

then our proposed method is presented in detail. The experimental results and analysis are shown in Section 3. 

Finally, the concluding remarks are given in Section 4.

2. Proposed Haze Removal Method

2.1 DCP-Based Haze Removal Method

The DCP is derived from the observation that many pixels have a value close to zero in at least one of R, G, 

B channels of a haze-free image. He et al. defines the patch-based dark channel to reflect the observation as
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�∈�(�)

� min
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�� (�)�                            (2)

where Ω(x) is a local patch centered at x, y denotes the index for a pixel in the patch, c is one of the three color 

channels (r, g, b), and Jc(x) means the color channel c of J(x) [9]. Jdark(x) in (2) can be reduced to zero according 

to the definition of DCP, and we utilize it as additional information for the single image haze removal. In order 

to use DCP, we apply the minimum operation to both sides of (1), then divide it by A to yield
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Applying the DCP to (3), the first term on the right side is 0, so we can estimate the transmission as

�(�) = 1 − min
�∈�(�)

�min
�

��(�)

��
�.                               (4)

Since the transmission t(x) is calculated in units of patches in (4), its edge information does not match to 

that of the original image. This makes the blocking effects, which consequently cause a halo effect in the 

restored image. A refinement process is included to overcome this problem, and He et al. refine the 
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transmission, a coarse data at this time, based on the similarity in their form between the optical model of hazy 

images in (1) and the matting equation. He et al. introduce the matting technique proposed by Levin et al. 

However, when the total number of pixels is N, it includes a very large matrix of N´N, resulting in a large 

memory requirement and computation complexity. Actually, Levin et al. apply the matting technique to the 

images with reduced resolutions in order to overcome the limitation of memory space for the large size images, 

such as larger than 400´400, and the interpolation is then used to reconstruct the image [18]. After the 

refinement process, J(x) can be restored by (1). We first pick the top 0.1% brightest pixels in the dark channel. 

Among these pixels, usually most haze-opaque, a pixel with the highest intensity in the input image I(x) is

selected as the atmospheric light A. Note that this pixel may not be brightest one in the whole input image.

2.2 Edge-Preserving Transmission Estimation

The patch-based dark channel includes distortions in the transmission estimation, since it does not reflect 

the edge information accurately, even though it is advantageous for the atmospheric light estimation. On the 

other hand, the pixel-based dark channel has a problem for the atmospheric light estimation, while it can 

estimate the transmission faithfully reflecting the edge information. Our work proposes an effective 

transmission estimation while preserving the edge information with combination of both methods. The patch-

based dark channel of the input image, Id(x) can be obtained by using

��(�) = min
�∈�(�)

� min
�∈{�,�,�}

��(�)�                             (5)

where c denotes one of the three color channels, and Ic(x) denotes the color channel c of I(x). The pixel-based 

dark channel of the input image, Ipd(x) is defined as

���(�) = min
�∈{�,�,�}

��(�).                              (6)

We can estimate the transmission preserving the edge information for the patch Ω(x), by comparing Id(x) of 

(5) and Ipd(x) of (6) in a pixel-based fashion, and selecting a large value. In the homogeneous region belonging 

to the same object as the left patch in Figure 1(a), the difference between Id(x) and Ipd(x) is small, so that it 

operates in the same manner as the existing patch-based method. As the right patch in Figure 1(a), we select 

either Id(x) or Ipd(x) in a pixel-based fashion near the edge, and thus a dark channel preserving edge information 

can be obtained. The conventional patch-based method selects the minimum value in the patch along the edges 

of the objects as shown in Figure 1(b), which leads the loss of edge information. Our method compares Id(x)

and Ipd(x), and then selects a large value for each pixel in the patch, so that it can obtain the dark channel while 

preserving the edge information, as shown in Figure 1(c).

(a) (b) (c)

Figure 1. Comparative illustration of the dark channel method. (a) Distribution of the object 

and patches, (b) Patch-based dark channel method, (c) Proposed dark channel method
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The proposed method estimates the transmission for the changing areas such as near the edges in a pixel-

based manner, and thus does not require the refinement process to reduce the halo effect of the restored image. 

Consequently, it can greatly reduce the computational complexity compared to the conventional method.

2.3 Adaptive Transmission Estimation

The other drawback of the conventional DCP is that the contour artifacts may occur in a restored haze-free 

image, apart from the time-consuming refinement process. Since the Id(x) in the sky region is usually close to 

the atmospheric light A, that is, Id(x)/A is close to 1, it results in a very small transmission t(x) according to 

(4). When restored by (1), this leads that J(x) can be greatly changed, even the small local intensity difference 

in sky region. This can be an idea for how the contour artifacts occur in a sky region. Due to the dark channel 

of the haze-free images in the bright or sky areas is far from 0, the DCP fails to correctly estimate the 

transmission t(x) in those regions, which can be expressed as 

�(�) = �1 −
��(�)

�
� �1 −

�����(�)

�
�� .                           (7)

To deal with this case, a confidence value obtained through a sophisticated human vision-based assumption 

is introduced in [17] to recompute the dark channel of the haze image Id(x). It can reduce the contour artifacts

by decreasing the Id(x) in the sky regions, but it also decreases the dark channel to some extent in non-sky 

regions, which may lead to the over-estimation of the transmission. Instead of modifying the Id(x), we solve 

this problem more essentially by making a new assumption for the dark channel Jdark(x) in the haze-free images. 

We use a function of Id(x) to estimate Jdark(x), since the only input is Id(x) of the hazy image. The estimated 

Jdark(x) is then close to zero in a non-bright area and is of high value in a bright area, which can eliminate the 

contour artifacts in the sky regions as well as not violate the conventional DCP in non-sky regions. The idea 

is that for the pixels in the sky regions, Jdark(x) is usually close to the atmospheric light A. We use the Gaussian 

function of (1 – Id(x)/A) instead of setting Jdark(x)/A to 0, defined in (8), so that we can adaptively set Jdark(x)/A

close to zero when the pixels are in non-sky regions and to a high value in the sky regions by using a small σ

value.
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and the transmission can be estimated using (7) and (8) as
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We empirically set σ to 0.15, and α is set to keep a bit of haze to make the restored image appear more 

natural. Since Jdark(x)/A is smaller than Id(x)/A, k is set to prevent Jdark(x)/A from being too large. For estimation 

of the atmospheric light A, we use the same method as in [9] by using the highest intensity pixel from the input 

image among the top 0.1% of the brightest pixels in the dark channel. The final haze-free image J(x) can be 

recovered by using (1). The recommended values for α and k are 0.85 – 0.95 and 0.4 – 0.6, respectively.

3. Experimental Results

We evaluate the performance of the proposed haze removal algorithm with widely-used hazy images, and 

compare it with the existing methods. The performance evaluation is conducted in terms of subjective visual 

quality and computational complexity that is measured by PC-based execution time. The existing methods 



26                          International Journal of Internet, Broadcasting and Communication Vol.12 No.1 21-29 (2020)

included in comparison are Tan’s method, maximizing local contrast of hazy images in [7], Fattal’s method, 

assuming the transmission and the surface shading locally uncorrelated in [8], and He et al.’s method, using 

the patch-based DCP in [9]. However, He et al.’s method includes the downsampling and interpolation 

processing for refinement of the images larger than 400´400 pixels due to memory amount restriction, and we 

consider them as a part of the whole execution time. Moreover, the patch size of the proposed method is set to 

7´7 pixels smaller than that of the conventional method.

It is shown in Figures 2 and 3 that the results of the haze removal methods including the proposed method 

applied to the test hazy images for the subjective visual quality evaluation. Figure 2 represents the small depth 

difference between the objects and background, whereas the depth difference in Figure 3 is relatively large, 

which also contains the sky area. Tan’s method increases the contrast in the result image, however color 

saturation occurs in the scene far from camera as shown in Figures 2(b) and 3(b). Compared to the input image, 

Fattal’s method increases the brightness due to consideration of image reflection rate, however the result image 

looks partially blurry, particularly in areas far from camera as shown in Figures 2(c) and 3(c). This is noticeable 

in images with large depth difference, such as Figure 3(c). He et al.’s method is excellent in haze removal 

performance, however the restored image remains somewhat hazy as shown in Figure 2(d), or it looks 

relatively dark in areas far from camera as shown in Figure 3(d). It can be seen in Figures 2(e) and 3(e) that 

the proposed method improves visibility and recognizes the objects better without saturation of particular color 

channel by effective haze removal.

(a) (b) (c) (d) (e)

Figure 1. Visual quality comparison of haze removal results for Red Bricks House (a) Hazy input 

image (b) Tan’s method (c) Fattal’s method (d) He et al.’s method (e) Proposed method

(a) (b) (c) (d) (e)

Figure 2. Visual quality comparison of haze removal results for Manhattan (a) Hazy input image (b) 

Tan’s method (c) Fattal’s method (d) He et al.’s method (e) Proposed method
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The analysis results of computational complexity for the conventional methods and the proposed algorithm 

are listed in Table 1. The computational complexity is measured by execution time of software implementation 

for each method. The simulation is carried out on the PC of 2.8GHz CPU and 3.5GB memory with 32-bit 

operating system and the software is implemented with C++ language. We execute the software 10 times for 

each image and obtain the average execution time.

Table 1. Comparative analysis for execution time (in sec) of each haze removal method

Image Tan Fattal He et al. Proposed

cityscape 59.81 10.97 9.85 2.51

forest 152.11 22.31 15.32 6.11

landscape 70.15 14.04 11.79 4.63

manhattan1 113.26 18.36 12.62 4.87

manhattan2 144.87 20.72 14.21 5.65

mountain 63.63 12.12 9.96 3.08

pumpkins 76.08 13.93 10.28 3.72

red bricks house 72.31 13.88 10.21 3.56

tiananmen 66.24 12.63 9.72 2.88

train 62.63 11.92 9.28 2.43

wheat cones 67.38 12.71 9.57 2.79

yosemite1 98.35 15.35 10.41 5.24

average 87.24 14.92 11.10 3.96

It can be found from Table 1 that the execution time of the proposed algorithm are greatly reduced compared 

to the conventional methods, particularly He et al.’s method. It is caused by two factors: the small patch size 

(7´7) reduces the computational complexity of the method; the edge-preserving transmission estimation does 

not require the refinement process which takes the execution time greatly. There are two points of views: the 

visual quality of the restored images and the computational complexity of the algorithm. It can be seen in 

Figures 2 and 3 that the proposed haze removal method makes visual quality of the restored images better 

compared to the conventional methods, and thus it improves the visibility of objects. Also, it can be thought 

from Table 1 that the execution time of the proposed haze removal method is greatly improved compared to 

the existing methods, and thus is can be applied to various devices utilizing outdoor images, such as 

autonomous vehicles, drones and unmanned aerial vehicles imaging, video surveillance systems, etc.

4. Conclusions

This paper presents an effective single image haze removal algorithm using edge-preserving and adaptive 

transmission estimation, so that it enhances the visibility of outdoor images vulnerable to weather and 

environmental conditions such as fog, smog, haze, etc., and it can be implemented with low computational 

complexity. The low complexity implementation of the proposed method can be achieved by using the small 

patch size and by not use of the refinement process. The edge-preserving transmission estimation does not the 

refinement process that requires large amount of memory and computational complexity, and it can 

consequently restore the hazy images without halo effects. Moreover, we propose an adaptive transmission 

estimation to enhance the visual quality particularly in bright regions like sky.

Comprehensive experiments with various hazy images show in the results that the proposed method is 

superior to both perspectives: subjective visual quality and computational complexity. The proposed haze 
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removal method compared to the conventional methods shows the better visual quality and the low 

computational complexity measured by PC-based execution time. The proposed method can be adopted to 

compose a haze removal module for real-time working in mobile devices, digital cameras, and so on as well 

as PCs that have enough processing resources. Further research topics related to this paper will be studied with 

color lines and haze lines methods to improve the visual quality of restored images, and with the low 

complexity implementation methods as well.
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