• 제목/요약/키워드: estimating equation

검색결과 751건 처리시간 0.022초

작부체계를 고려한 새만금유역의 토양유실량 추정 (Estimating Soil Losses from Saemangeum Watershed based on Cropping Systems)

  • 이은정;조영경;박승우;김학관
    • 한국농공학회논문집
    • /
    • 제48권6호
    • /
    • pp.101-112
    • /
    • 2006
  • A Geographic Information System (GIS) was developed to estimate basin-wide soil losses using the Universal Soil Loss Equation (USLE). It was applied to estimate the annual average soil losses from the Saemangeum watershed. The USLE factors for each subarea of uniform land use and treatments were estimated from the GIS routines from digital topographic maps, land cover and detailed soil maps. A routine was developed to estimate the averaged cropping management factors (C) of USLE for multi-cropping farmlands, based on cropping system records from the district offices. The resulting C factors ranged from 0.28 to 0.35 for multi-cropping areas. The estimated annual average soil loss was approximately 2.9 million tonnes. Typical soil losses from different land uses were 0.8 t/ha at paddies, 33.7 t/ha at uplands and 1.1 t/ha from forested mountains. It was also found that 6.0% of the arable land of the watershed possessed high risks of soil losses, and conservation measures were needed to reduce soil losses.

다변량 통계 분석법을 이용한 2성분계 혼합물의 인화점 예측 (Prediction of Flash Point of Binary Systems by Using Multivariate Statistical Analysis)

  • 이범석;김성영;정창복;최수형
    • 한국가스학회지
    • /
    • 제10권4호
    • /
    • pp.29-33
    • /
    • 2006
  • 화학공정 설계에서 공정의 위험성 판단은 중요한 부분이다. 실제 화학공정에 사용되는 가연성 물질의 화재 및 폭발 위험성을 판단하는 인화점에 대한 예측은 그 방법 중의 하나이다. 본 연구에서는 2성분계 가연성 물질의 인화점에 대한 실험 자료를 이용하여 다변량 통계 분석법(partial least squares(PLS), quadratic partial least squares(QPLS))을 이용하여 2성분계 혼합물의 인화점을 예측하였고, 기존의 Raoult의 법칙과 Van Laar 식에 의한 예측값과 비교해 보았다.

  • PDF

굳지 않은 MMA개질 UP 폴리머 콘크리트의 사용가능시간에 미치는 온도와 결합재의 영향 (Effects of Temperature and Binder Components on Working Life of Fresh MMA Modified UP Polymer Concrete)

  • 연정흠;현상훈
    • 한국도로학회논문집
    • /
    • 제14권4호
    • /
    • pp.51-61
    • /
    • 2012
  • PURPOSES : This study deals with the working life of polymer concrete, which is typically used as a repair or overlay material for portland cement concrete pavements. METHODS : In the scope of this study, laboratory testing was conducted on fresh MMA modified UP polymer concrete, which uses an MMA monomer for viscosity adjustment and strength improvement of UP resin. The experimental variables were temperature (-20 to $+20^{\circ}C$) and binder components (MMA, MEKPO, and DMA). RESULTS : The result showed that the optimum binder ratios for polymer concrete production were 12, 11, and 10 wt.% when the MMA contents were 20, 30, and 40 wt.%, respectively. The working life of polymer concrete depending on temperature and binder components could be expressed by a logarithmic functional formula. The coefficient of variation for each binder component was the highest for DMA content while the lowest for MEKPO content. Also, the contents of each binder component for ensuring the working life of 60 minutes were proposed. CONCLUSIONS : Ultimately, the present study derived a linear regression equation estimating 60 minutes working life based on the setting times of each binder component.

단순회귀분석에 의한 배수성 아스팔트의 투수계수 산정모델 제안 (Proposal for the Estimation of the Hydraulic Conductivity of Porous Asphalt Concrete Pavement using Regression Analysis)

  • 장영선;김도완;문성호;장병관
    • 한국도로학회논문집
    • /
    • 제15권3호
    • /
    • pp.45-52
    • /
    • 2013
  • PURPOSES : This study is to construct the regression models of drainage asphalt concrete specimens and to provide the appropriate coefficients of hydraulic conductivity prediction models. METHODS: In terms of easy calculation of the hydraulic conductivity from porosity of asphalt concrete pavement, the estimation model of hydraulic conductivity was proposed using regression analysis. 10 specimens of drainage asphalt concrete pavement were made for measurement of the hydraulic conductivity. Hydraulic conductivity model proposed in this study was calculated by empirical model based on porosity and the grain size. In this study, it shows the compared results from permeability measured test and empirical equation, and the suitability of proposed model, using regression analysis. RESULTS: As the result of the regression analysis, the hydraulic conductivity calculated from the proposal model was similar to that resulted from permeability measured test. Also result of RMSE (Root Mean Square Error) analysis, a proposed regression model is resulted in more accurate model. CONCLUSIONS: The proposed model can be used in case of estimating the hydraulic conductivity at drainage asphalt concrete pavements in fields.

UKF 기반 2-자유도 진자 시스템의 파라미터 추정 (Parameter Estimation of 2-DOF System Based on Unscented Kalman Filter)

  • 승지훈;김태영;아티야 아미어;팔로스 알렉산더;정길도
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1128-1136
    • /
    • 2012
  • In this paper, the states and parameters in a dynamic system are estimated by applying an Unscented Kalman Filter (UKF). The UKF is widely used in various fields such as sensor fusion, trajectory estimation, and learning of Neural Network weights. These estimations are necessary and important in determining the stability of a mobile system, monitoring, and predictions. However, conventional approaches are difficult to estimate based on the experimental data, due to properties of non-linearity and measurement noises. Therefore, in this paper, UKF is applied in estimating the states and parameters needed. An experimental dynamic system has been set up for obtaining data and the experimental data is collected for parameter estimation. The measurement noises are primarily reduced by applying the Low Pass Filter (LPF). Given the simulation results, the estimated error rate is 39 percent more efficient than the results obtained using the Least Square Method (LSM). Secondly, the estimated parameters have an average convergence period of four seconds.

감자역병 진전도 예측모형 작성 (Modeling for Prediction of Potato Late Blight (Phytophthora infestans))

  • 안재훈;함영일;신관용
    • 한국식물병리학회지
    • /
    • 제14권4호
    • /
    • pp.331-338
    • /
    • 1998
  • To develop the model for prediction of potato late blight progress, the relationship between severity index of potato late blight transformed by the logit and Gompit transformation function and cumulative severity value (CSV) processing weather data during growing period in Taegwallyeong alpine area, 1975 to 1992 were examined. When logistic model and Gompertz model were compared by determining goodness of fit for progressive degree of late blight using CSV as independent variable, the coefficients of determination were higher as 0.742 in the logistic model than 0.680 in the Gompertz model. Parameters in logistic model were composed of progressive rate and initial value of logistic model. Initial value was calculated in -3.664. The progressive rate of potato late blight was 0.137 in cv. Superior, 0.136 in cv. Irish Cobbler, and 0.070 in cv. Jopung without fungicide sprays. According to in crease of the number of spray times the progressive rate was lowered, was 0.020 in cv. Superior under the conventional program of fungicide sprays, 10 times sprays during cropping season. Equation of progressive rate, b1=0.0088 ACSV-0.033 (R2=0.976), was written by examining the relationship between the parameters of progressive rate of late blight and the average CSV (ACSV) quantifing weather information. By estimating parameters of logistic function, model able to describe the late blight progress of potato, cv. Superior was formulated in Y=4/(1+39.0·exp((0.0088 ACSV-0.033)·CSV).

  • PDF

Simplified sequential construction analysis of buildings with the new proposed method

  • Afshari, Mohammad Jalilzadeh;Kheyroddin, Ali;Gholhaki, Majid
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.77-88
    • /
    • 2017
  • Correction Factor Method (CFM) is one of the earliest methods for simulating the actual behavior of structure according to construction sequences and practical implementation steps of the construction process which corrects the results of the conventional analysis just by the application of correction factors. The most important advantages of CFM are the simplicity and time-efficiency of the computations in estimating the final modified forces of the beams. However, considerable inaccuracy in evaluating the internal forces of the other structural members obtained by the moment equilibrium equation in the connection joints is the biggest disadvantage of the method. This paper proposes a novel method to eliminate the aforementioned defect of CFM by using the column shortening correction factors of the CFM to modify the axial stiffness of columns. In this method, the effects of construction sequences are considered by performing a single step analysis which is more time-efficient when compared to the staged analysis especially in tall buildings with higher number of elements. In order to validate the proposed method, three structures with different properties are chosen and their behaviors are investigated by application of all four methods of: conventional one-step analysis, sequential construction analysis (SCA), CFM, and currently proposed method.

Seismic response modification factors for stiffness degrading soil-structure systems

  • Ganjavi, Behnoud;Bararnia, Majid;Hajirasouliha, Iman
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.159-170
    • /
    • 2018
  • This paper aims to develop response modification factors for stiffness degrading structures by incorporating soil-structure interaction effects. A comprehensive parametric study is conducted to investigate the effects of key SSI parameters, natural period of vibration, ductility demand and hysteretic behavior on the response modification factor of soil-structure systems. The nonlinear dynamic response of 6300 soil-structure systems are studied under two ensembles of accelograms including 20 recorded and 7 synthetic ground motions. It is concluded that neglecting the stiffness degradation of structures can results in up to 22% underestimation of inelastic strength demands in soil-structure systems, leading to an unexpected high level of ductility demand in the structures located on soft soil. Nonlinear regression analyses are then performed to derive a simplified expression for estimating ductility-dependent response modification factors for stiffness degrading soil-structure systems. The adequacy of the proposed expression is investigated through sensitivity analyses on nonlinear soil-structure systems under seven synthetic spectrum compatible earthquake ground motions. A good agreement is observed between the results of the predicted and the target ductility demands, demonstrating the adequacy of the expression proposed in this study to estimate the inelastic demands of SSI systems with stiffness degrading structures. It is observed that the maximum differences between the target and average target ductility demands was 15%, which is considered acceptable for practical design purposes.

소유역 유달율 추정공식 개발 -보청A유역을 중심으로- (Estimating Nutrients Delivery Ratios at the Subwatershed Scale -A Case Study at the Bochung-A Watershed-)

  • 전지홍;최동혁;임경재;김태동
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.27-35
    • /
    • 2010
  • The characteristics of delivered nutrient loads were analyzed and the regression equations to estimate delivery ratios of nutrients (TN and TP) were developed using HSPF simulation results at six subwatersheds within the Bochung A unit watershed during 1998-2007. TN delivery ratio was higher than TP delivery ratio because significant amounts of TP was considered to be attached at soil as ${PO_4}^-$ during delivery process from discharged point of nutrient source to main stream. As a results of correlation analysis, factors related to geomorphic characteristics had not statistical correlation with TN and TP delivery ratios. TN loading rate from living and specific stream flow had statistical negative and positive correlation, respectively, with TN delivery ratio. TP loading rates from all sources and from land cover and specific stream flow had statistical negative, negative and positive correlation, respectively. The specific stream flow represents the most strong correlation with nutrient delivery ratios. The regression equations to estimate delivery ratios for TN and TP were developed by including statistical correlated factors and showed high efficiency of 0.98 and 0.95 of coefficient of determination for TN and TP, respectively.

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.