• Title/Summary/Keyword: estimating equation

Search Result 743, Processing Time 0.026 seconds

A BLUE Estimator for Passive Localization by TDOA Method (TDOA 방식 기반 위치 추정을 위한 BLUE 추정기)

  • Lee, Young-Kyu;Yang, Sung-Hoon;Kwon, Taeg-Yong;Lee, Chang-Bok;Park, Byung-Koo;Lee, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.702-711
    • /
    • 2011
  • In this paper, we derived a closed-form equation of a Best Linear Unbiased Estimator (BLUE) and its Crammer-Rao Lower Bound (CRLB) for the estimation of the position of the emitter based on the Time Difference of Arrival (TDOA) teclmique. The BLUE and CRLB were derived for the case of estimating 2 dimensional position of the emitter with 3 base stations or sensors, and for this purpose, we nsed an approximated equation of the TDOA hyperbola equation obtained from the first order Taylor-series after setting the reference points of the position. The derived equation can be used for any kind of noises which are uncorrelated in each other in the TOA measurement noises and for a white Gaussian noise also.

Estimation of Drilling Velocity for Horizontal Wells Based on Alluvial Sediment Characteristics (충적층 입자 특성을 고려한 수평집수정 굴착 속도 추정)

  • Kim, Gyoo-Bum;Lee, Jeong-Woon;Lee, Chi-Hyung
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.273-280
    • /
    • 2015
  • Delays in horizontal well drilling when encountering heterogeneous sediments can have negative effects on the construction process at a riverbank filtration site. Grain size analysis, including calculation of the coefficient of uniformity and the coefficient of curvature, was conducted on soil samples collected at each drilling depth during the process of drilling horizontal wells. These results were then used to develop a linear equation for estimating drilling velocity using the coefficient of uniformity and the coefficient of curvature as inputs. Testing of the linear equation in other horizontal wells indicates that the equation is most appropriate for coarse-sand-sized and well-sorted sediment. Because this study was conducted in a region with small- to medium-sized streams, more data are needed from larger rivers to modify the general equation. Our results will provide better estimates of drilling velocity, in turn enabling more detailed design and more effective construction management at riverbank filtration sites.

Neutral detergent fiber rather than other dietary fiber types as an independent variable increases the accuracy of prediction equation for digestible energy in feeds for growing pigs

  • Choi, Hyunjun;Sung, Jung Yeol;Kim, Beob Gyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.615-622
    • /
    • 2020
  • Objective: The objectives were to investigate correlations between energy digestibility (digestible energy [DE]:gross energy [GE]) and various fiber types including crude fiber (CF), total dietary fiber (TDF), soluble dietary fiber (SDF), insoluble dietary fiber (IDF), neutral detergent fiber (NDF), and acid detergent fiber (ADF), and to develop prediction equations for estimating DE in feed ingredients and diets for growing pigs. Methods: A total of 289 data with DE values and chemical composition of feeds from 39 studies were used to develop prediction equations for DE. The equations were validated using values provided by the National Research Council. Results: The DE values in feed ingredients ranged from 2,011 to 4,590 kcal/kg dry matter (DM) and those in diets ranged from 2,801 to 4,203 kcal/kg DM. In feed ingredients, DE:GE was negatively correlated (p<0.001) with NDF (r = -0.84), IDF (r = -0.83), TDF (r = -0.82), ADF (r = -0.78), and CF (r = -0.72). A best-fitting model for DE (kcal/kg) in feed ingredients was: 1,356 + (0.704 × GE, kcal/kg) - (60.3 × ash, %) - (27.7 × NDF, %) with R2 = 0.80 and p<0.001. In diets, DE:GE was negatively correlated (p<0.01) with NDF (r = -0.72), IDF (r = -0.61), TDF (r = -0.52), CF (r = -0.45), and ADF (r = -0.34). A best-fitting model for DE (kcal/kg) in diets was: 1,551 + (0.606 × GE, kcal/kg) - (22.1 × ash, %) - (25.6 × NDF, %) with R2 = 0.62 and p<0.001. All variables are expressed as DM basis. The equation developed for DE in feed ingredients had greater accuracy than a published equation for DE. Conclusion: All fiber types are reasonably good independent variables for predicting DE of swine feeds. The best-fitting model for predicting DE of feeds employed neutral detergent fiber as an independent variable.

A BLUE Estimator of 3-D Positioning by TDOA Method (TDOA 방식 기반 3-D 위치 추정을 위한 BLUE 추정기)

  • Lee, Young-Kyu;Yang, Sung-Hoon;Kwon, Tac-Yung;Lee, Chang-Bok;Park, Byung-Koo;Lee, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.10
    • /
    • pp.912-920
    • /
    • 2012
  • In this paper, we derived a closed-form equation of a Best Linear Unbiased Estimator (BLUE) estimator for the 3 dimensional estimation of the position of the emitter based on the Time Difference of Arrival (TDOA) technique. The BLUE derived for the case of estimating 3 dimensional position of the emitter with 4 base stations or sensors, and for this purpose, we used an approximated equation of the TDOA hyperbola equation obtained from the first order Taylor-series after setting the reference points of the position. The derived equation can be used for any kind of noises which are uncorrelated in each other in the TOA measurement noises and for a white Gaussian noise also.

Integration of GIS with USLE in Assessment of Soil Erosion due to Typoon Rusa (태풍 루사에 의한 토양 침식량 산정을 위한 GIS와 범용토양손실공식(USLE) 연계)

  • Hahm, Chang-Hahk;Kim, Byung-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.77-85
    • /
    • 2007
  • Assessment of soil erosion is a cost and time-consuming task. There are many models developed to predict soil erosion from an area, but Universal Soil Loss Equation (USLE) is most widely used empirical equation for estimating annual soil erosion. Soil erosion depends upon-rainfall intensity, type of soil, land cover and land use, slope degree, slope length and soil conservation practice. All these parameters are have spatial distribution and hence satellite remote sensing and Geographic Information System (GIS) are applicable in the assessment of the influence on soil erosion. GIS has been integrated with the USLE (Universal Soil Loss Equation) model in identification of rainfall-based erosion to the Bocheong River which is the representative basin of IHP due to Typhoon Rusa. Similar studies are available in literature, ranging from those that use a simple model such as USLE to others of a more sophisticated nature.

  • PDF

Allometric Equations for Estimating the Standing Biomass of Basidiocarps (버섯 자실체의 현존량 추정을 위한 상대생장식)

  • Heo, Eun-Pork;You, Young-Han
    • The Korean Journal of Mycology
    • /
    • v.37 no.1
    • /
    • pp.55-59
    • /
    • 2009
  • The mushroom takes in charge of decomposer in ecosystem and its production is important indicator for sounded ecosystem function. To determine standing crop of basidiocarps(fruit body of mushroom), a weight must be measured by harvesting mushroom individual in the field. But this method has profound affection on the basidiocarps population or its surrounding condition due to habitat destruction. Thus, in this study, without harvesting any mushroom in the field, we developed allometric equation using some morphological parameters to estimate standing crop biomass of basidiocarps. Lentinula edodes, Pleurotus ostreatus, Flammulina velutipes and Conocybe tenera were used for allometry. Morphological variables of the mushroom were pileus diameter, pileus area, stipe length and stipe thickness. Consequently, all the experimental mushrooms species showed significantly correlation in biomass estimation of basidiocarps from allometric equation (p<0.05). As a result of this research, the standing biomass of the basidiocarps could be indirectly estimated with proportional expression, allometric equation drived from morphological characters.

Duration Magnitude and Local-Duration Magnitude Relations for Earth-quakes of 1979-1998 Recorded at KMA Network (한반도 지진의 지속규모식에 관한 연구)

  • 박삼근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.421-435
    • /
    • 1998
  • An empirical formula for estimating duration magnitude(MD)is determined by analyzing 619 epicentral distance-duration data set, obtained from earthquakes of 1989-1998 recorded at the KMA network. Based on two assumptions: 1) observed signal duration decreases with increasing epicentral distance, and 2) seismographs of KMA are set at low-gain and therefore inclusion of sensitivity correction term in the equation is not necessary, scaling predicted duration at epicenter to Tsuboi's local magnitude yielded the duration magnitude equation: MD =2.0292$\times$log$\tau$+0.00123Δ-1.4017 for 1/0$\leq$ML$\leq$5.0, where $\tau$is total signal duration(sec)and Δis epicentral distance(km). Event by event comparison of ML values against MD estimates for t152 events shows that for events having a same ML the difference in MD estimates reaches as high as 1.1 magnitude units. So, to test the usefulness of the duration magnitude equation, we have calculated ML-MD relations by which duration magnitude estimates are converted to local magnitudes ("predicted" ML, say) which are then compared with the directly determined local magnitude values. Except for events with stations where duration is anomalously reestimates(predicted ML) which are in an agreement within a 0.2 magnitude units with the corresponding ML values. Although this study could gain some insights into magnitudes of the past events, we still need to re-examine all the observables in order to obtain more reliable and precise information about magnitude and hypocenter location. So we will pursue a new local-magnitude scaling, as well as refinement of the duration magnitude equation, starting soon with re-reading the amplitudes-arrival time records of (and hence relocating) 250+earthquakes of 1979-present recorded at the KMA network. Thus, with more reliable and precise earthquake parameters determined we would better understand the recent seismicity and related tectonic process within and adjacent region to the Korean peninsula.peninsula.

  • PDF

An overview of applicability of WEQ, RWEQ, and WEPS models for prediction of wind erosion in lands

  • Seo, Il Whan;Lim, Chul Soon;Yang, Jae Eui;Lee, Sang Pil;Lee, Dong Sung;Jung, Hyun Gyu;Lee, Kyo Suk;Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.381-394
    • /
    • 2020
  • Accelerated soil wind erosion still remains to date to cause severe economic and environmental impacts. Revised and updated models to quantitatively evaluate wind induced soil erosion have been made for specific factors in the wind erosion equation (WEQ) framework. Because of increasing quantities of accumulated data, the WEQ, the revised wind erosion equation (RWEQ), the wind erosion prediction system (WEPS), and other soil wind erosion models have been established. These soil wind erosion models provide essential knowledge about where and when wind erosion occurs although naturally, they are less accurate than the field-scale. The WEQ was a good empirical model for comparing the effects of various management practices on potential erosion before the RWEQ and the WEPS showed more realistic estimates of erosion using easily measured local soil and climatic variables as inputs. The significant relationship between the observed and predicted transport capacity and soil loss makes the RWEQ a suitable tool for a large scale prediction of the wind erosion potential. WEPS developed to replace the empirical WEQ can calculate soil loss on a daily basis, provide capability to handle nonuniform areas, and obtain predictions for specific areas of interest. However, the challenge of precisely estimating wind erosion at a specific regional scale still remains to date.

A Stagewise Approach to Structural Equation Modeling (구조식 모형에 대한 단계적 접근)

  • Lee, Bora;Park, Changsoon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.1
    • /
    • pp.61-74
    • /
    • 2015
  • Structural equation modeling (SEM) is a widely used in social sciences such as education, business administration, and psychology. In SEM, the latent variable score is the estimate of the latent variable which cannot be observed directly. This study uses stagewise structural equation modeling(stagewise SEM; SSEM) by partitioning the whole model into several stages. The traditional estimation method minimizes the discrepancy function using the variance-covariance of all observed variables. This method can lead to inappropriate situations where exogenous latent variables may be affected by endogenous latent variables. The SSEM approach can avoid such situations and reduce the complexity of the whole SEM in estimating parameters.

Estimation of Individual Tree Volumes for the Japanese Red Cedar Plantations (삼나무조림지(造林地)의 입목(立木) 간재적(幹材積) 추정(推定)에 관(關)한 연구(硏究))

  • Lee, Young Jin;Hong, Sung Cheon;Kim, Dong Geun;Oh, Seung Hwan;Kim, Own Su;Cho, Jeong Ung
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.742-746
    • /
    • 2001
  • This study was carried out to develop volume equations for Japanese Res Cedar(Cryptomeria japonica D. Don) trees which were widely planted from 1920s throughout the southern regions in south Korea. The 31 trees for stem analysis were selected in 6 different sites in the southern and 29 trees data were used for developing volume equation. The best equation in estimating Japanese Red Cedar trees's volume was suggested as $V=-0.002908+0.000125D^{1.907114}H^{0.645131}$. The simultaneous F-test for this equation revealed that the estimated individual tree volume was not significantly different (p=0.1936) from the observed tree volume for model evaluation. Therefore, this individual tree volume prediction equation could provide basic information for the construction of yield table and forest management.

  • PDF