• Title/Summary/Keyword: estimated breeding value (EBV)

Search Result 23, Processing Time 0.026 seconds

A study of the genomic estimated breeding value and accuracy using genotypes in Hanwoo steer (Korean cattle)

  • Eun Ho, Kim;Du Won, Sun;Ho Chan, Kang;Ji Yeong, Kim;Cheol Hyun, Myung;Doo Ho, Lee;Seung Hwan, Lee;Hyun Tae, Lim
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.681-691
    • /
    • 2021
  • The estimated breeding value (EBV) and accuracy of Hanwoo steer (Korean cattle) is an indicator that can predict the slaughter time in the future and carcass performance outcomes. Recently, studies using pedigrees and genotypes are being actively conducted to improve the accuracy of the EBV. In this study, the pedigree and genotype of 46 steers obtained from livestock farm A in Gyeongnam were used for a pedigree best linear unbiased prediction (PBLUP) and a genomic best linear unbiased prediction (GBLUP) to estimate and analyze the breeding value and accuracy of the carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS). PBLUP estimated the EBV and accuracy by constructing a numeric relationship matrix (NRM) from the 46 steers and reference population I (545,483 heads) with the pedigree and phenotype. GBLUP estimated genomic EBV (GEBV) and accuracy by constructing a genomic relationship matrix (GRM) from the 46 steers and reference population II (16,972 heads) with the genotype and phenotype. As a result, in the order of CWT, EMA, BFT, and MS, the accuracy levels of PBLUP were 0.531, 0.519, 0.524 and 0.530, while the accuracy outcomes of GBLUP were 0.799, 0.779, 0.768, and 0.810. The accuracy estimated by GBLUP was 50.1 - 53.1% higher than that estimated by PBLUP. GEBV estimated with the genotype is expected to show higher accuracy than the EBV calculated using only the pedigree and is thus expected to be used as basic data for genomic selection in the future.

Comparison on genomic prediction using pedigree BLUP and single step GBLUP through the Hanwoo full-sib family

  • Eun-Ho Kim;Ho-Chan Kang;Cheol-Hyun Myung;Ji-Yeong Kim;Du-Won Sun;Doo-Ho Lee;Seung-Hwan Lee;Hyun-Tae Lim
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1327-1335
    • /
    • 2023
  • Objective: When evaluating individuals with the same parent and no phenotype by pedigree best linear unbiased prediction (BLUP), it is difficult to explain carcass grade difference and select individuals because they have the same value in pedigree BLUP (PBLUP). However, single step GBLUP (ssGBLUP), which can estimate the breeding value suitable for the individual by adding genotype, is more accurate than the existing method. Methods: The breeding value and accuracy were estimated with pedigree BLUP and ssGBLUP using pedigree and genotype of 408 Hanwoo cattle from 16 families with the same parent among siblings produced by fertilized egg transplantation. A total of 14,225 Hanwoo cattle with pedigree, genotype and phenotype were used as the reference population. PBLUP obtained estimated breeding value (EBV) using the pedigree of the test and reference populations, and ssGBLUP obtained genomic EBV (GEBV) after constructing and H-matrix by integrating the pedigree and genotype of the test and reference populations. Results: For all traits, the accuracy of GEBV using ssGBLUP is 0.18 to 0.20 higher than the accuracy of EBV obtained with PBLUP. Comparison of EBV and GEBV of individuals without phenotype, since the value of EBV is estimated based on expected values of alleles passed down from common ancestors. It does not take Mendelian sampling into consideration, so the EBV of all individuals within the same family is estimated to be the same value. However, GEBV makes estimating true kinship coefficient based on different genotypes of individuals possible, so GEBV that corresponds to each individual is estimated rather than a uniform GEBV for each individual. Conclusion: Since Hanwoo cows bred through embryo transfer have a high possibility of having the same parent, if ssGBLUP after adding genotype is used, estimating true kinship coefficient corresponding to each individual becomes possible, allowing for more accurate estimation of breeding value.

Comparison of accuracy of breeding value for cow from three methods in Hanwoo (Korean cattle) population

  • Hyo Sang Lee;Yeongkuk Kim;Doo Ho Lee;Dongwon Seo;Dong Jae Lee;Chang Hee Do;Phuong Thanh N. Dinh;Waruni Ekanayake;Kil Hwan Lee;Duhak Yoon;Seung Hwan Lee;Yang Mo Koo
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.720-734
    • /
    • 2023
  • In Korea, Korea Proven Bulls (KPN) program has been well-developed. Breeding and evaluation of cows are also an essential factor to increase earnings and genetic gain. This study aimed to evaluate the accuracy of cow breeding value by using three methods (pedigree index [PI], pedigree-based best linear unbiased prediction [PBLUP], and genomic-BLUP [GBLUP]). The reference population (n = 16,971) was used to estimate breeding values for 481 females as a test population. The accuracy of GBLUP was 0.63, 0.66, 0.62 and 0.63 for carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS), respectively. As for the PBLUP method, accuracy of prediction was 0.43 for CWT, 0.45 for EMA, 0.43 for MS, and 0.44 for BFT. Accuracy of PI method was the lowest (0.28 to 0.29 for carcass traits). The increase by approximate 20% in accuracy of GBLUP method than other methods could be because genomic information may explain Mendelian sampling error that pedigree information cannot detect. Bias can cause reducing accuracy of estimated breeding value (EBV) for selected animals. Regression coefficient between true breeding value (TBV) and GBLUP EBV, PBLUP EBV, and PI EBV were 0.78, 0.625, and 0.35, respectively for CWT. This showed that genomic EBV (GEBV) is less biased than PBLUP and PI EBV in this study. In addition, number of effective chromosome segments (Me) statistic that indicates the independent loci is one of the important factors affecting the accuracy of BLUP. The correlation between Me and the accuracy of GBLUP is related to the genetic relationship between reference and test population. The correlations between Me and accuracy were -0.74 in CWT, -0.75 in EMA, -0.73 in MS, and -0.75 in BF, which were strongly negative. These results proved that the estimation of genetic ability using genomic data is the most effective, and the smaller the Me, the higher the accuracy of EBV.

The effect of progeny numbers and pedigree depth on the accuracy of the EBV with the BLUP method

  • Jang, Sungbong;Kim, So Yeon;Lee, Soo-Hyun;Shin, Min Gwang;Kang, Jimin;Lee, Dooho;Kim, Sidong;Noh, Seung Hee;Lee, Seung Hwan;Choi, Tae Jeong
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.293-301
    • /
    • 2019
  • This study was done to estimate the effect of progeny numbers and pedigree depth on the accuracy of the estimated breeding value (EBV) using best linear unbiased prediction (BLUP) method in Hanwoo. The experiment groups (sire = 100, 200, and 300; progeny = 4 and 8) were made by random sampling and by genetic evaluation of the following traits: Body weight (BW), carcass weight (CW), eye muscle area (EMA), back fat thickness (BFT) and marbling score (MS9). As a result of the genetic evaluation, the accuracy of the EBV was roughly 30 - 60% with 4 progenies, and the accuracy of the EBV increased by about 50 - 75% with 8 progenies. In the other words, when the number of progenies increased from 4 to 8, the accuracy of the EBV simultaneously increased by about 15 - 20%. Moreover, when the number of sires was higher, variations in the accuracy of the EBV within the groups for each trait decreased. Therefore, this result indicates that not only the number of progeny but also the number of sires can affect the accuracy of the EBV. Consequently, collecting information on the progeny and careful management of that information are very important things in the Hanwoo breeding system. Therefore, the EBV can show more precise results when conducting genetic evaluations.

Genome Wide Association Studies Using Multiple-lactation Breeding Value in Holsteins

  • Cho, Kwang-Hyun;Oh, Jae-Don;Kim, Hee-Bal;Park, Kyung-Do;Lee, Joon-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.328-333
    • /
    • 2015
  • A genome wide association study was conducted using estimated breeding value (EBV) for milk production traits from 1st to 4th lactation. Significant single nucleotide polymorphism (SNP) markers were selected for each trait and the differences were compared by lactation. DNA samples were taken from 456 animals with EBV which are Holstein proven bulls whose semen is being sold or the daughters of old proven bulls whose semen is no longer being sold in Korea. High density genome wide SNP genotype was investigated and the significance of markers associated with traits was tested using the breeding value estimated by a multiple lactation model as a dependent variant. As the result of significance comparisons by lactations, several differences were found between the first lactation and subsequent lactations (from second to 4th lactation). A similar trend was noted in mean deviation and correlation of the estimated effects by lactation. Since there was a difference in the genes associated with EBV for each trait between first and subsequent lactations, a multi-lactation model in which lactation is considered as a different trait is genetically useful. Also, significant markers in all lactations and common markers for different traits were detected, which can be used as markers for quantitative trait loci exploration and marker assisted selection in milk production traits.

The effectiveness of genomic selection for milk production traits of Holstein dairy cattle

  • Lee, Yun-Mi;Dang, Chang-Gwon;Alam, Mohammad Z.;Kim, You-Sam;Cho, Kwang-Hyeon;Park, Kyung-Do;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.382-389
    • /
    • 2020
  • Objective: This study was conducted to test the efficiency of genomic selection for milk production traits in a Korean Holstein cattle population. Methods: A total of 506,481 milk production records from 293,855 animals (2,090 heads with single nucleotide polymorphism information) were used to estimate breeding value by single step best linear unbiased prediction. Results: The heritability estimates for milk, fat, and protein yields in the first parity were 0.28, 0.26, and 0.23, respectively. As the parity increased, the heritability decreased for all milk production traits. The estimated generation intervals of sire for the production of bulls (LSB) and that for the production of cows (LSC) were 7.9 and 8.1 years, respectively, and the estimated generation intervals of dams for the production of bulls (LDB) and cows (LDC) were 4.9 and 4.2 years, respectively. In the overall data set, the reliability of genomic estimated breeding value (GEBV) increased by 9% on average over that of estimated breeding value (EBV), and increased by 7% in cows with test records, about 4% in bulls with progeny records, and 13% in heifers without test records. The difference in the reliability between GEBV and EBV was especially significant for the data from young bulls, i.e. 17% on average for milk (39% vs 22%), fat (39% vs 22%), and protein (37% vs 22%) yields, respectively. When selected for the milk yield using GEBV, the genetic gain increased about 7.1% over the gain with the EBV in the cows with test records, and by 2.9% in bulls with progeny records, while the genetic gain increased by about 24.2% in heifers without test records and by 35% in young bulls without progeny records. Conclusion: More genetic gains can be expected through the use of GEBV than EBV, and genomic selection was more effective in the selection of young bulls and heifers without test records.

Evaluation of Optimum Genetic Contribution Theory to Control Inbreeding While Maximizing Genetic Response

  • Oh, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.299-303
    • /
    • 2012
  • Inbreeding is the mating of relatives that produce progeny having more homozygous alleles than non-inbred animals. Inbreeding increases numbers of recessive alleles, which is often associated with decreased performance known as inbreeding depression. The magnitude of inbreeding depression depends on the level of inbreeding in the animal. Level of inbreeding is expressed by the inbreeding coefficient. One breeding goal in livestock is uniform productivity while maintaining acceptable inbreeding levels, especially keeping inbreeding less than 20%. However, in closed herds without the introduction of new genetic sources high levels of inbreeding over time are unavoidable. One method that increases selection response and minimizes inbreeding is selection of individuals by weighting estimated breeding values with average relationships among individuals. Optimum genetic contribution theory (OGC) uses relationships among individuals as weighting factors. The algorithm is as follows: i) Identify the individual having the best EBV; ii) Calculate average relationships ($\bar{r_j}$) between selected and candidates; iii) Select the individual having the best EBV adjusted for average relationships using the weighting factor k, $EBV^*=EBV_j(1-k\bar{{r}_j})$ Repeat process until the number of individuals selected equals number required. The objective of this study was to compare simulated results based on OGC selection under different conditions over 30 generations. Individuals (n = 110) were generated for the base population with pseudo random numbers of N~ (0, 3), ten were assumed male, and the remainder female. Each male was mated to ten females, and every female was assumed to have 5 progeny resulting in 500 individuals in the following generation. Results showed the OGC algorithm effectively controlled inbreeding and maintained consistent increases in selection response. Difference in breeding values between selection with OGC algorithm and by EBV only was 8%, however, rate of inbreeding was controlled by 47% after 20 generation. These results indicate that the OGC algorithm can be used effectively in long-term selection programs.

Effect of errors in pedigree on the accuracy of estimated breeding value for carcass traits in Korean Hanwoo cattle

  • Nwogwugwu, Chiemela Peter;Kim, Yeongkuk;Chung, Yun Ji;Jang, Sung Bong;Roh, Seung Hee;Kim, Sidong;Lee, Jun Heon;Choi, Tae Jeong;Lee, Seung-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1057-1067
    • /
    • 2020
  • Objective: This study evaluated the effect of pedigree errors (PEs) on the accuracy of estimated breeding value (EBV) and genetic gain for carcass traits in Korean Hanwoo cattle. Methods: The raw data set was based on the pedigree records of Korean Hanwoo cattle. The animals' information was obtained using Hanwoo registration records from Korean animal improvement association database. The record comprised of 46,704 animals, where the number of the sires used was 1,298 and the dams were 38,366 animals. The traits considered were carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS). Errors were introduced in the pedigree dataset through randomly assigning sires to all progenies. The error rates substituted were 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80%, respectively. A simulation was performed to produce a population of 1,650 animals from the pedigree data. A restricted maximum likelihood based animal model was applied to estimate the EBV, accuracy of the EBV, expected genetic gain, variance components, and heritability (h2) estimates for carcass traits. Correlation of the simulated data under PEs was also estimated using Pearson's method. Results: The results showed that the carcass traits per slaughter year were not consistent. The average CWT, EMA, BFT, and MS were 342.60 kg, 78.76 ㎠, 8.63 mm, and 3.31, respectively. When errors were introduced in the pedigree, the accuracy of EBV, genetic gain and h2 of carcass traits was reduced in this study. In addition, the correlation of the simulation was slightly affected under PEs. Conclusion: This study reveals the effect of PEs on the accuracy of EBV and genetic parameters for carcass traits, which provides valuable information for further study in Korean Hanwoo cattle.

Effects of high energy diet on growth performance, carcass characteristics, and blood constituents of Hanwoo steers distributed by estimated breeding value for meat quality (고에너지 사양이 육종가 배치별 거세한우의 성장, 도체, 및 혈액성상에 미치는 영향)

  • Chung, Ki-Yong;Lee, Sung- Hwan;Chang, Sun-Sik;Lee, Eun-Mi;Kim, Hyun-Joo;Park, Bo-Hye;Kwon, Eung-Ki
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.361-368
    • /
    • 2015
  • This study was to investigate the effect of high energy diet on characteristics of Hanwoo steers distributed by estimated breeding value (EBV). The aim of this experiment was to determine the effect of high energy diet on the high and low beef group distributed by EBV for quality grades. We hypothesized that high energy diet is able to increase quality traits in high EBV groups when fed a high energy diet. A $2{\times}2$ factorial arrangement (High energy, control vs high EBV, low EBV) in a completely random design was used to feed 26 Hanwoo steers. Blood was drawn from each steers from 11 to 28 months. ADG and feed efficiency were not different between high energy and control diet (P>0.05). The level of DMI was greater at calf and early fattening diet in low EBV groups (P<0.05). Serum glucose and tryglyceride conecntrations were increased (P<0.05) by high EBV group from 22 to 28 month old. Serum NEFA concentration were plateau at 24 months at high EBV group and steady reduced by high energy diet (P<0.05). This data indicated that high energy diets increased serum glucose and triglyceride concentrations of high EBV steers at final fattening period.

The study on estimated breeding value and accuracy for economic traits in Gyoungnam Hanwoo cow (Korean cattle)

  • Kim, Eun Ho;Kim, Hyeon Kwon;Sun, Du Won;Kang, Ho Chan;Lee, Doo Ho;Lee, Seung Hwan;Lee, Jae Bong;Lim, Hyun Tae
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • This study was conducted to construct basic data for the selection of elite cows by analyzing the estimated breeding value (EBV) and accuracy using the pedigree of Hanwoo cows in Gyeongnam. The phenotype trait used in the analysis are the carcass weight (CWT), eye muscle area (EMA), backfat thickness (BFT) and marbling score (MS). The pedigree of the test group and reference group was collected to build a pedigree structure and a numeric relationship matrix (NRM). The EBV, genetic parameters and accuracy were estimated by applying NRM to the best linear unbiased prediction (BLUP) multiple-trait animal model of the BLUPF90 program. Looking at the pedigree structure of the test group, there were a total of 2,371 cows born between 2003 to 2009, of these 603 cows had basic registration (25%), 562 cows had pedigree registration (24%) and 1,206 cows had advanced registration (51%). The proportion of pedigree registered cows was relatively low but it gradually increased and reached a point of 20,847 cows (68%) between 2010 to 2017. Looking at the change in the EBV, the CWT improved from 4.992 kg to 9.885 kg, the EMA from 0.970 ㎠ to 2.466 ㎠, the BFT from -0.186 mm to -0.357 mm, and the MS from 0.328 to 0.559 points. As a result of genetic parameter estimation, the heritability of CWT, EMA, BFT, and MS were 0.587, 0.416, 0.476, and 0.571, respectively, and the accuracy of those were estimated to be 0.559, 0.551, 0.554, and 0.558, respectively. Selection of superior genetic breed and efficient improvement could be possible if cow ability verification is implemented by using the accurate pedigree of each individual in the farms.