• Title/Summary/Keyword: ester synthesis

Search Result 433, Processing Time 0.028 seconds

Synthesis and Lubricating Properties of Succinic Acid Alkyl Ester Derivatives (숙신산 알킬 에스테르 유도체의 합성 및 윤활특성)

  • Baek, Seung-Yeob;Kim, Young-Wun;Chung, Keun-Wo;Yoo, Seung-Hyun;Park, Su-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.196-202
    • /
    • 2011
  • In this paper, a series of alkyl succinic acid esters for base oil were synthesized by condensation reaction of succinic anhydride and fatty alcohol. The structures of the synthesized esters were confirmed by $^1H-NMR$, FT-IR spectrum and GC analysis. Basic properties of esters such as kinematic viscosity (KV), refractive index (RI), total acid number (TAN) and pour points were measured and lubricating properties such as SRV wear scar diameter (SRV WSD), fraction coefficient (COF) and 4-ball wear (4-ball WSD) were also evaluated. As the results of basic properties, KV, RI and pour point of synthetic esters increased as the carbon chain of the esters increased. Measurement value of total acid number (TAN) was indicated between 0.2~4 mgKOH/g, and that metal working fluids and pressure working oils are acceptable to use as base oil. Also, lubricating properties of the esters showed as follows: 0.391~0.689 mm of SRV WSD, 0.110~0.138 of SRV COF and 0.49~0.55 mm of 4-ball WSD depended on the structure of the esters. In a comparison on the lubrication capacity of the SRV test based on polyester TMPTO, SRV WSD result showed that a better performance caused by the alkyl group. On the other hand, SRV COF test was not influenced of the alkyl group which the capacity of the lubricant was sightly diminished than the comparison material, regardless of the alkyl group.

Synthesis and Property of Modified PMMA Resin Using Polyurethane and Polyurethane Dimethacrylate (Polyurethane과 polyurethane dimethacrylate를 이용한 내충격성 PMMA수지의 합성과 그 물성)

  • Kim, Dong-Hyun;Kim, Ju-Young;Seo, Kyung-Do
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.616-626
    • /
    • 1993
  • Polyurethane(PU) have an excellent flexibility and toughness so that it has been widely used as an elastomer. PMMA was blended with PU to improve the impact property. Five types of PU, having different molecular weight and different polyol types, were prepared and blended with PMMA in order to investigate the effect of molecular weight and polyol type of PU on property of PU-PMMA blend. Tensile strength of PU-PMMA blend was determined by Inston. Differential Scanning Calorymetry(DSC) and Scanning. Elctron Microscopy(SEM) were used to observe morphology change and glass transition temperature changes of PU-PMMA blends. Transparency of PU-PMMA blends was determined by haze meter. But, owing to intrinsic incompatability of PU-PMMA, Low impact strength of PMMA wasn't improved through PU-PMMA blend. therefore, polyurethane dimethacrylate(PUD), having similiar chemical structure to PU and two vinyl group at both ends, was prepared and reacted with methyl methacrylate(MMA) to form crosslinked copolymer Mechanical property of this crosslinked polymer, such as impact strength and transparency, was investigated by Instron, Izod type (Cantilever beam) impact tester and haze meter. Results of these measurements showed that crosslinked copolymer of PUD-MMA was better impact resistance than PMMA and maintained similar transparency to PMMA.

  • PDF

Synthesis and Characterization of Chelating Resins Containing Thiol Croups (티올기를 함유하는 킬레이트 수지의 합성 및 특성)

  • 박인환;방영길;김경만;주혁종
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.330-339
    • /
    • 2003
  • Three kinds of macro-reticular bead-typed chelating resins having thiol groups were obtained from basic resins like poly(strene-co-divinylbenzene) (PSD) and poly(styrene-co-methyl methacrylate-co-divinylbenzene) (PSMD): the chelating resin (I) was prepared by chloromethylation of phenyl rings of PSD followed by thiolation using thiourea. The chelating resin (ll) was designed to provide enough space to chelate heavy metal ions; one chloromethyl group was obtained by chlorination of hydroxymethyl group provided by reduction of carboxylic ester group of PSMD and another chloromethyl group was obtained by direct chloromethylation of pendent phenyl group using chloromethyl methyl ether. Both of chloromethyl groups were thiolated by using thiourea. The chelating resin (III) was prepared by chlorosulfonation of phenyl rings of PSD followed by thiolation using sodium hydrosulfide. The adsorbtivity toward heavy metal ions was evaluated. The hydrophobic chelating resin (I) with thiol groups showed highly selective adsorption capacity f3r mercury ions. However, the chelating resin (II) with thiol groups showed mere effective adsorption capacity toward mercury ions than chelating resin (I) with thiol groups, and showed some adsorption capacity for other heavy metal ions like Cu$\^$2+/, Pb$\^$2+/, Cd$\^$2+/ and Cr$\^$3+/. On the other hand, the chelating resin (III) which have hydrophilic thiosulfonic acid groups was found to be effective adsorbents for some heavy metal ions such as Hg$\^$2+/, Cu$\^$2+/, Ni$\^$2+/, Co$\^$2+/, Cr$\^$3+/ and especially Cd$\^$2+/ and Pb$\^$2+/.

An Experimental Study of Effect on ECV 304 Cells, Platelet Rich Plasma and Rats treated with L-NAME by Ondamtang extract (온담탕이 고혈압 백서와 인간유래 혈관내피세포주(ECV 304)에 미치는 영향)

  • Baek Il-Sung;Park Chang-Gook;Lee So-Yeon;Yoon Hyeon-Deok;Sin Wo-Chul;Park Chi-Sang
    • Herbal Formula Science
    • /
    • v.12 no.2
    • /
    • pp.175-202
    • /
    • 2004
  • Nitric oxide(NO) play an important role in normal and pathophysiological cells including as a messenger molecule, neurotransmitter, microbiocidal agent, or dilator of blood vessels and artheriosclerosis, hypertension, myocardial infarction, respectively. To investigate that Ondamtang in the potential contribution of the levels of nitric oxide generated by endothelial nitric oxide synthase (eNOS) and the mechanisms of protection against L-NAME, human ECV304 cells, which normally do not express eNOS, were expressed by L-NAME. L-NAME stimulated rat or cells were found to be resistant to injury and delayed death following the Ondam-tang. Inhibition of nitric oxide synthesis abolished the protective effect against L-NAME, thrombin and collagen exposure. Interestingly, such effects have bee observed during stimulation with agents such as KCl on L-NAME mediate rats, were damaged by the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Cardiovascular diseases is one of the blood vessels and renin-angiotensin system dynfunction. So we studied on herbal medicine that have a relation of vessels endothelium necrosis. In Oriental Medicine, Ondam-tang has been used for disease in relation to cardiovascular system. We studied on the protection and inhibitory effects of cardiovascular diseases in L-NAME induced rat or ECV304 cell lines through the Cell morphological pattern, Tunel assay, LDH activity, heart rate, blood pressure and immunohistochemistric analysis by Ondam-tang. As the result of this study, In group, the anti-apoptosis and necrosis in the cardiovascular system have a potential capacity for prevented, protected and treating the diseases of cardiovascular system, against the necrosis of rat and ECV304 cells with eNOS and calpain expression by L-NAME is promoted.

  • PDF

A Synthesis of Alkylphenyl fluorobenzoate Derivatives and Their Antifungal Activities on Several Phytopathogens (Alkylphenyl fluorobenzoate 유도체들의 합성과 몇 가지 식물병원균에 대한 항균활성)

  • Choi, Won-Sik;Cha, Kyung-Min;Kim, Young-Sun;Jang, Soon-Ho;Lim, Sang-Ho;Choi, In-Young;Kim, Tae-Jun;Jung, Bong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.307-314
    • /
    • 2008
  • Sixty compounds such as alkylphenyl fluorobenzoate esters from thymol(I), 5-isopropyl-3-methylphenol (II), 4-isopropyl-3-methylphenol (III), 2-sec-butylphenol (IV) and 4-sec-butylphenol (V) were synthesized. These derivatives were identified by IR, $^1H$-NMR spectrometer and GC/MS. Their in vivo antifungal activities were tested against phytopathogens such as Phytophthora infestans, Botrytis cinerea, Colletotrichum orbiculare and Rhizoctonia solani. As the result, 2-sec-butylphenyl 2,5-difluorobenzoate (IV-6) and 4-sec-butylphenyl 2,5-difluorobenzoate (V-6) showed 90% above antifungal activity against Botrytis cinerea. 2-Isopropyl-5-methylphenyl 2,3,6-trifluorobenzoate (I-11), 2-isopropyl-5-methylphenyl 2,4,5-trifluorobenzoate (I-12), 5-isopropyl-3-methylphenyl 2,3,6-trifluorobenzoate (II-11), 4-isopropyl-3-methylphenyl 2,3,6-trifluorobenzoate (III-11) and 4-isopropyl-3-methylphenyl 2,4,5-trifluorobenzoate (III -12) showed 90% above potent antifungal activity against Colletotrichum orbiculare.

Effects of ${\alpha}-linolenic$, eicosapentaenoic and docosahexaenoic acids administration on lowering of triacylglycerol level in the hepatic and serum of rats (n-3계 지방산 투여가 성장기 흰쥐의 간장 및 혈청 Triacylglycerol 농도에 미치는 영향)

  • Cha, Jae-Young;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.414-420
    • /
    • 1998
  • We studied the difference effects of dietary ${\alpha}-linolenic\;acid\;({\alpha}-LA,\;18:3\;n-3)$, eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) on the lowering of triacylglycerol in the liver and serum on lipid metabolism in rats. Rats were fed semipurified diets containing 10% fat with constant polyunsaturated/monounsaturated/saturated fatty acids (1:1:1) and n-6/n-3 ratio (1:2). EPA (98%) and DHA (98%) were added in diets as the ethyl esters. The concentration of liver triacylglycerol was significantly lower in rats fed both EPA and DHA than in those fed ${\alpha}-LA$. The concentration of liver phospholipid was significantly higher in rats fed DHA than in those fed ${\alpha}-LA$ and EPA. Both EPA and DHA reduced serum triacylglycerol concentration compared with ${\alpha}-LA$, but this effect was more pronounced in the EPA diet. The activity of phophatidate phosphohydrolase in the liver microsome was significantly lower in rats fed both EPA and DHA than in those fed ${\alpha}-LA$. but, there was no significant difference on the activities of diacylglycerol acyltransferase among the three groups. The concentration of liver triacylglycerol were correlated with changes in the microsomal phosphatidate phosphohydrolase activity (r=0.84). Hepatic NADPH generating enzyme, glucose-6-phosphate dehydrogenase was more effective to reduce the activity in rats fed both EPA and DHA than in those fed ${\alpha}-LA$. In conclusion, EPA or DHA reduced the hepatic triacylglycerol concentration by inhibiting microsomal phosphatidate phosphohydrolase, thereby inhibiting synthesis of triacylglycerol in the liver.

  • PDF

The Effect of 12-O-Tetradecanoylphorbol-13-acetate-induced COX-2 Expression by 3,3'-Diindolylmethane (DIM) on Human Mammary Epithelial Cells (3,3'-Diindolylmethane(DIM)이 Human Mammary Epithelial Cell에서 12-O-tetradecanoylphorbol-13-acetate에 의해 유도된 COX-2 발현에 미치는 영향)

  • Park, So Young;Shim, Jae-Hoon;Kim, Jong-Dae;YoonPark, Jung Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1701-1707
    • /
    • 2012
  • 3,3'-Diindolylmethane (DIM) is a major in vivo derivative of the putative anticancer agent indole-3-carbinol, which is present in cruciferous vegetables and has been reported to have anti-carcinogenic properties. An abnorrmally elevated level of cyclooxygenase-2 (COX-2) has been implicated in the pathogenesis of carcinogenesis. To investigate the mechanism by which DIM exhibits anti-carcinogenic effects, we investigated the effects of DIM on COX-2 expression in MCF-10A human mammary epithelial cells treated with the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). DIM inhibited TPA-induced COX-2 expression and suppressed the synthesis of prostaglandin $E_2$, one of the major products of COX-2. Nuclear factor-kappa B ($NF-{\kappa}B$) is a transcription factor known to play a role in regulation of COX-2 expression. Treatment of MCF-10A cells with TPA increased nuclear translocation of phospho-p65, with the maximal levels being reached at 1 hour, while DIM inhibited the TPA-induced nuclear translocation of phospho-p65. Overall, we demonstrated that DIM suppresses phorbol ester-induced $PGE_2$ production and COX-2 expression in MCF-10A cells. The reduction in COX-2 levels by DIM maybe mediated through inhibition of $NF-{\kappa}B$ signaling.

Immunostimulation of C6 Glioma Cells Induces Nitric Oxide-Dependent Cell Death in Serum-Free, Glucose-Deprived Condition

  • Shin, Chan-Young;Choi, Ji-Woong;Ryu, Jae-Ryun;Ryu, Jong-Hoon;Kim, Won-Ki;Kim, Hyong-Chun;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.140-146
    • /
    • 2000
  • Recently, we reported that immunostimulation of primary rat cortical astrocyte caused stimulation of glucose deprivation induced apoptotic cell death. To enhance the understanding of the mechanism of the potentiated cell death of clucose-deprived astrocyte by immunostimulation, we investigated the effect of immunostimulation on the glucose deprivation induced cell death of rat C6 glioma cells. Co-treatment of C6 glioma cells with lipopolysaccharide (LPS, $1\;{\mu}\textrm{g}/ml$) and interferon ${\gamma}(IFN{\gamma},\;100U/ml)$ is serum free condition caused marked elevationo f nitric oxide production ($>50\;{\mu}M$). In this condition, glucose deprivation caused significant release of lactate dehdrogenase (LDH) from C6 glioma cells while control cells did not show LDH release. To investigate whether elevated level of nitric oxide is responsible for the enhanced LDH release in glucose-deprived condition, C6 glioma cells were treated with 3-morphorinosydnonimine (SIN-1) and it was observed that SIN-1 caused increase in LDH release from glucose-deprived C6 glioma cells. Treatment of C6 glioma cells with $25\;{\mu}M$ of pyrrolidinedithiocarbamate (PDTC) which inhibit Nuclear factor kB (NF-kB) activation, caused complete inhibition of nitric oxide production. Treatment of C6 glioma cells with NO synthase inhibitors, $N^{G}$-nitro-L-arginine (NNA) or L-$N{\omega}$-nitro-L-arginine methyl ester (L-NAME), caused inhibition of nitric oxide production and also glucose deprivation induced cell death of cytokine-stimulated C6 glioma cells. In addition, diaminohydroxypyrimidine (DAHP, 5 mM) which inhibits the synthesis of tetrahydrobiopterine (BH4), one of essential cofactors for iNOS activity, caused complete inhibition of NO production from immunostimulated C6 glioma cells. The results from the present study suggest that immunostimulation causes potentiation of glucose deprivation induced death of C6 glioma cells which is mediated at least in part by the increased production of nitric oxide. The vulnerability of immunostimulated C6 glioma cells to hypoglycemic insults may implicate that the elevated level of cytokines in various ischemic and neurodegenerative diseases may play a role in their pathogenesis.

  • PDF

Development of New Materials of Ginseng by Nanoparticles

  • Yang, Deok Chun;Mathiyalagan, Ramya;Yang, Dong Uk;Perez, Zuly Elizabeth Jimenez;Hurh, Joon;Ahn, Jong Chan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.3-3
    • /
    • 2018
  • For centuries, Panax ginseng Meyer (Korean ginseng) has been widely used as a medicinal herb in Korea, China, and Japan. Ginsenosides are a class of triterpene saponins and recognized as the bioactive components in Korean ginseng. Ginsenosides, which can be classified broadly as protopanaxadiols (PPD), protopanaxatriols (PPT), and oleanolic acids, have been shown to flaunt a vast array of pharmacological activities such as immune-modulatory, anti-inflammatory, anti-tumor, anti-diabetic, and antioxidant effects. In recent years, a number of ginseng and ginsenoside researches have increasingly gained wide attention owing to its unique pharmacological properties. Although good efficacies of ginsenosides have been reported, lack of target specific delivery into tumor sites, low solubility, and low bioavailability due to modifications in gastro-intestinal environments limit their biomedical application in clinical trials. As a result to this major challenge, nanotechnology and drug delivery techniques play a significant role to solve this problematic issue. Thus, we reported the preparation of poly-ethylene glycol (PEG) and glycol chitosan (GC) functionalized to ginsenoside (Compound K and PPD) conjugates via hydrolysable ester bonds with improved aqueous solubility and pH-dependent drug release. In vitro cytotoxicity assays revealed that PEG-CK, and PPD-CK conjugates exhibited lower cytotoxicity compared to bare CK and PPD in HT29 cells. However, GC-CK conjugates exhibited higher and similar cytotoxicity in HT29 and HepG2 cells. Furthermore, GC-CK-treated RAW264.7 cells did not exhibit significant cell death at higher concentration of treatment which supports the biocompatibility of the polymer conjugates. They also inhibited nitric oxide production in lipopolysaccharide (LPS)-induced RAW64.7 cells. In addition to polymer-ginsenoside conjugates, silver (AgNps) and gold nanoparticles (AuNps) have been successfully synthesized by green chemistry using different m. The biosynthesized nanoparticles demonstrated antimicrobial efficacy, anticancer, anti-inflammatory, antioxidant activity, biofilm inhibition, and anticoagulant effect. Special interest on the effective delivery methods of ginsenoside to treatment sites is the focus of metal nanoparticle research.In short, nano-sizing of ginsenoside results in an increased water solubility and bioavailability. The use of nano-sized ginsenoside and P. ginseng mediated metallic nanoparticles is expected to be effective on medical platform against various diseases in the future.

  • PDF

Synthesis of Renewable Resource-derived Furan-based Epoxy Compounds and Their Adhesive Property (재생자원 유래 퓨란계 에폭시 화합물의 합성 및 접착 특성)

  • Lee, Jae-Soung;Lee, Sang-Hyeup;Jeong, Jaewon;Kim, Baekjin;Cho, Jin Ku;Kim, Hyun Joong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.41-49
    • /
    • 2010
  • Furan-containing epoxide monomers (8, 9) were designed and synthesized as carbon-neutral, environment-friendly adhesion material. Bicyclic skeleton were constructed using the Diels-Alder reaction of furan and methyl acrylate, both readily accessible starting material from a biomass via bio-refinery process. After reduction of ester functionality, resulting hydroxyl moieties were coupled to epichlorohydrin to provide the epoxy-functionalized furanic monomers (8, 9). The structure of new furanic monomers was confirmed by $^1H$ and $^{13}C$ NMR spectroscopy. As UV-curable monomers, basic properties such as UV curing time and the extent of UV curing were evaluated by photo DSC. Photo-curing shrinkages were measured by linear variable differential transformer transducer (LVDT) and the effect of molecular structure on shrinkage was considered. In addition, new synthetic compounds showed the shear strength over 3 MPa when they were photo-cured between polycarbonate plates, which indicates these compounds are feasible to use as photo-curable adhesive materials.