• Title/Summary/Keyword: essential spectra

Search Result 114, Processing Time 0.024 seconds

Structure-Antagonistic Activity Relationships of an NK-2 Tachykinin Receptor Antagonist, L-659,877 and Its Analogues

  • Ha, Jong-Myung;Shin, Song-Yub;Hong, Hea-Nam;Suh, Duk-Joon;Jang, Tae-Sik;Kang, Shin-Won;Kuean, Sun-Jin;Ha, Bae-Jin
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.429-435
    • /
    • 1996
  • To investigate the structure-antagonistic relationship of the cyclohexapeptide L-659,877, a selective NK-2 tachykinin receptor antagonist, seven analogues were chemically synthesized by a solid phase method. The agonistic and antagonistic activities of the analogues were evaluated by contraction assay using the smooth muscle of guinea pig trachea (GPT) containing the NK-2 receptor. It was shown that the aromatic ring of Phe at position 3 and the sulfur group of Met at position 6 in L-659,877 were essential for binding to the NK-2 receptor. Decrease in antagonistic activity of L-659,877 caused by substituting Leu for Nle at position 5 indicates that the ${\gamma}$ methyl group and side chain length of Leu plays an important role in its antagonistic action. Although the activity was slightly lower than L-659,877, cyclo $[{\beta}Ala^{8}]NKA(4-10)$ (analogue 1) showed potential antagonistic activity for the NK-2 receptor. It was confirmed that the expansion of the ring in L-659,877 by substitution of ${\beta}Ala$ for Gly at position 4 stabilized its conformation monitored by CD spectra. The results suggest that analogue 1 can be used as a new leader compound to design a more powerful, selective, and stable NK-2 receptor antagonist.

  • PDF

Wind characteristics at Sutong Bridge site using 8-year field measurement data

  • Xu, Zidong;Wang, Hao;Wu, Teng;Tao, Tianyou;Mao, Jianxiao
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.195-214
    • /
    • 2017
  • Full-scale wind characteristics based on the field measurements is an essential element in structural wind engineering. Statistical analysis of the wind characteristics at Sutong Cable-stayed Bridge (SCB) site is conducted in this study with the recorded long-term wind data from structural health monitoring system (SHMS) between 2008 and 2015. Both the mean and turbulent wind characteristics and power spectra are comprehensively investigated and compared with those in the current codes of practice, such as the measured wind rose diagram, monthly maximum mean wind speed, turbulence intensity, integral length scale. Measurement results based on the monitoring data show that winds surrounding the SCB site are substantially influenced by the southeast monsoon in summer and strong northern wind in winter. The measured turbulence intensity is slightly higher than the recommended values in specifications, while the measured ratio of lateral to longitudinal turbulence intensity is slightly lower. An approximately linear relationship between the measured turbulence intensities and gust factors is obtained. The mean value of the turbulence integral length scale is smaller than that of typical typhoon events. In addition, it is found that the Kaimal spectrum is suitable to be adopted as the power spectrum for longitudinal wind component at the SCB site. This contribution would provide important wind characteristic references for the wind performance evaluation of SCB and other civil infrastructures in adjacent regions.

Net Analyte Signal-based Quantitative Determination of Fusel Oil in Korean Alcoholic Beverage Using FT-NIR Spectroscopy

  • Lohumi, Santosh;Kandpal, Lalit Mohan;Seo, Young Wook;Cho, Byoung Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.208-220
    • /
    • 2016
  • Purpose: Fusel oil is a potent volatile aroma compound found in many alcoholic beverages. At low concentrations, it makes an essential contribution to the flavor and aroma of fermented alcoholic beverages, while at high concentrations, it induced an off-flavor and is thought to cause undesirable side effects. In this work, we introduce Fourier transform near-infrared (FT-NIR) spectroscopy as a rapid and nondestructive technique for the quantitative determination of fusel oil in the Korean alcoholic beverage "soju". Methods: FT-NIR transmittance spectra in the 1000-2500 nm region were collected for 120 soju samples with fusel oil concentrations ranging from 0 to 1400 ppm. The calibration and validation data sets were designed using data from 75 and 45 samples, respectively. The net analyte signal (NAS) was used as a preprocessing method before the application of the partial least-square regression (PLSR) and principal component regression (PCR) methods for predicting fusel oil concentration. A novel variable selection method was adopted to determine the most informative spectral variables to minimize the effect of nonmodeled interferences. Finally, the efficiency of the developed technique was evaluated with two different validation sets. Results: The results revealed that the NAS-PLSR model with selected variables ($R^2_{\upsilon}=0.95$, RMSEV = 100ppm) did not outperform the NAS-PCR model (($R^2_{\upsilon}=0.97$, RMSEV = 7 8.9ppm). In addition, the NAS-PCR shows a better recovery for validation set 2 and a lower relative error for validation set 3 than the NAS-PLSR model. Conclusion: The experimental results indicate that the proposed technique could be an alternative to conventional methods for the quantitative determination of fusel oil in alcoholic beverages and has the potential for use in in-line process control.

Formation of Bioactive Surface by PEO-treatment after 2nd ATO Technique of Ti-6Al-4V Alloy (Ti-6Al-4V 합금에 2nd ATO 처리 후 플라즈마 전해 산화법에 의한 생체활성표면형성)

  • Lim, Sang-Gyu;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.74-74
    • /
    • 2018
  • Ti-6Al-4V alloys have been widely used as orthopedic materials because of their excellent corrosion resistance and mechanical properties. However, it does not bind directly to the bone, so it requires a surface modification. This problem can be solved by nanotube and micropore formation. Plasma electrolytic oxidation (PEO) treatment for micropore, which combines high-voltage spark and electrochemical oxidation, is a new way of forming a ceramic coating on light metals such as titanium and its alloys. This method has excellent reproducibility and can easily control the shape and size of the Ti alloy. In this study, formation of bioactive surface by PEO-treatment after $2^{nd}$ ATO technique of Ti-6Al-4V alloy was invesgated by various instrument. Nanotube oxide surface structure was formed on the surface by anodic oxidation treatment in 0.8 wt.% NaF and 1M $H_3PO_4$ electrolytes. After nanotube formation, nanotube layer was removed by ultrasonic cleaning. PEO-treatment was carried out at 280V for 3 minutes in the electrolytic solution containing the bioactive substance (Mg, Zn, Mn, Sr, and Si). The surface of Ti-6Al-4V alloy was observed by field emission scanning electron microscopy (FE-SEM, S-4800 Hitachi, Japan). An energy dispersive X-ray spectrometer (EDS, Inca program, Oxford, UK) was used to analyze the spectra of physiologically active Si, Mn, Mg, Zn, and Sr ions. The PEO film formed on the Ti-6Al-4V alloy surface was characterized using an X-ray diffractometer (TF-XRD, X'pert Philips, Netherlands). It is confirmed that bioactive ions play an essential role in the normal bone growth and metabolism of the human skeletal tissues.

  • PDF

Components of Pine Needles Extract and Functionality of the Dyed Fabrics (솔잎 추출물의 성분 분석 및 염색물의 건강안전 기능성 평가)

  • Joen, Mi-Sun;Park, Myung-Ja
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.2
    • /
    • pp.371-381
    • /
    • 2010
  • The pine needles can be used for four seasons in normal living and it can be taken friendly everywhere as it is distributed over 50% in Korea. The pine needles consist of vitamins, protein, minerals, essential oil and enzyme related to antimicrobial activity. It has effect like high blood pressure, neuralgia and hanged over by terpene, glucokinin, rutin, apigenic acid and tannin. Also the extract of them can be used for dyeing of fabrics. However, the extract components and effects of them are not well known yet. Therefore, the purpose of this study was to investigate the volatile components of the pine needles extract and functionality. The pine needles extract was dyed into various fabrics(nylon, silk, wool and soybean) and mordanted with Al, Cu, Cr, Fe and Sn. The extracted aroma compounds were compared by gas chromatography-mass spectrometry. The major volatile compounds of pine needles verified by using SPME were alpha-pinene, beta-pinene, beta-phellandrene, caryophyllene, ethanon, benzen. A total of 15 compounds were identified by using the SPME fibers. In the UV-visible spectra, the maximum absorption of wavelength of the pine needles ethanol extract appeared at 460, 630nm for chlorophyll component and at 237, 281nm for tannin component with the pine needles distilled water extract. Most of sample showed high antibacterial effect in none mordant but wool fabric showed high antibacterial effect in mordants. The result of UV block test showed a superior ability of blocking ultraviolet ray infiltration in all sample.

Physicochemical Characterization of Chlorosome Isolated from Chlorobium limicola f. thiosulfatophilum NCIB 8327 (Chlorobium limicola f. thiosulfatophilum NCIB 8327에서 분리한 Chlorosomes의 물리화학적 특성)

  • Na, Jong-Uk;Yoon, Hwan;Kang, Sa-Ouk
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.9-16
    • /
    • 1993
  • Physicochemical characteristics of chlorosomes isolated from Chlorobium lirnicoh f.thiosulfirtc~pl~ilut~i NClB 8327 were analyzed by means of UV-Visible spectrophotometer and CD-spectrophotometer. The density of the isolated chlorosomes were estimated to be 1.05 (g/$cm^{3}$) by Percoll self gradient ultracentrifugation. Chlorosome consist of bacteriochlorophyll d and some chlorobactene, and little amounl of bacteriochlorophyll a. Chlorosome is stable from 0 to $80^{\circ}C$and alkaline solution (above pH 7.0). but unstable in illuminated condition. From these results. it is suggested that some proteins or lipids may be essential for the stabilization of chlorosomes in vivo.

  • PDF

The Measurement of National Standard ${\beta}$-Rays Energy Spectrum (기준 베타선장의 에너지 스펙트럼 측정)

  • Kim, Chul-Hang;Yi, Chul-Young;Kim, Hyun-Moon;Hah, Suck-Ho;Jeon, Gook-Jin
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.285-291
    • /
    • 2012
  • In the present study, we measured the pure beta particle energy spectra of $^{147}Pm$, $^{85}Kr$, $^{90}Sr+^{90}Y$ radionuclide sources. We confirmed the residual maximum energies of KRISS sources meet the requirement of ISO 6980 and calculated mass collision stopping power ratio, which is essential for absolute measurement of absorbed dose from the reference ${\beta}$-rays. The residual maximum energies of KRISS $^{147}Pm$, $^{85}Kr$, $^{90}Sr+^{90}Y$ sources are 0.14, 0.57 and 0.93 MeV, respectively and the mass collision stopping power ratios are 1.123, 1.120 and 1.109, respectively.

Nitric Oxide Production Inhibitory Effects of Three Caffeoylquinic Acids Isolated from Hot Water Extract of Eriobotrya japonica L. Leaves (비파엽 열수 추출물에서 분리한 Caffeoylquinic Acid 3 종의 Nitric Oxide 생성 억제 효과)

  • Kim, Sun Min;Kim, A Young;Lee, Kyoung In
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.4
    • /
    • pp.245-253
    • /
    • 2020
  • Background: Research on hot water extracts of medicinal plants that are easily applicable in the clinical setting is essential. To confirm the anti-inflammatory-related active compounds present in the hot water extract of Eriobotrya japonica leaves, ability to inhibit nitric oxide (NO) production was measured and active compounds isolated from the extract were analyzed. Methods and Results: Sovent fractionation by solvent was performed to identify the active compounds present in the hot water extract, and the ability of the extract and the fractions obtained to inhibit NO production was measured. Subsequently, based on the results of liquid chromatography (LC) profile analysis of the n-butanol fraction that had a relatively high inhibitory ability of NO production, six subfractions were separated around the main peak. Among the separated subfractions spectra from mass spectroscopy (MS) were analyzed and standard comparisons were performed on the compounds of the three main peaks on the chromatogram. NO production inhibitory activity of subfraction 2 identified as neochlorogenic acid was the highest with an IC50 of 18.49 ㎍/㎖ followed by that of subfraction 5 identified as cryptochlorogenic acid with IC50 of 25.82 ㎍/㎖. Conclusions: Our result, it was confirmed that several caffeoylquinic acids, including neochlorogenic acid and cryptochlorogenic acid present in the hot water extract of E. japonica leaves have an important role as compounds exhibiting anti-inflammatory activity.

Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: Comparison of SrI2 and GAGG using Monte-Carlo simulation

  • Kim, Minho;Hong, Bong Hwan;Cho, Ilsung;Park, Chawon;Min, Sun-Hong;Hwang, Won Taek;Lee, Wonho;Kim, Kyeong Min
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.626-636
    • /
    • 2021
  • Boron-neutron capture therapy (BNCT) is a cancer treatment method that exploits the high neutron reactivity of boron. Monitoring the prompt gamma rays (PGs) produced during neutron irradiation is essential for ensuring the accuracy and safety of BNCT. We investigate the imaging of PGs produced by the boron-neutron capture reaction through Monte Carlo simulations of a gamma camera with a SrI2 scintillator and parallel-hole collimator. GAGG scintillator is also used for a comparison. The simulations allow the shapes of the energy spectra, which exhibit a peak at 478 keV, to be determined along with the PG images from a boron-water phantom. It is found that increasing the size of the water phantom results in a greater number of image counts and lower contrast. Additionally, a higher septal penetration ratio results in poorer image quality, and a SrI2 scintillator results in higher image contrast. Thus, we can simulate the BNCT process and obtain an energy spectrum with a reasonable shape, as well as suitable PG images. Both GAGG and SrI2 crystals are suitable for PG imaging during BNCT. However, for higher imaging quality, SrI2 and a collimator with a lower septal penetration ratio should be utilized.

Numerical Study on Seismic Behavior of a Three-Story RC Shear Wall Structure (3층 전단벽 구조물의 지진응답에 관한 수치해석)

  • Park, Dawon;Choi, Youngjun;Hong, Jung-Wuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.111-119
    • /
    • 2021
  • A shear wall is a structural member designed to effectively resist in-plane lateral forces, such as strong winds and earthquakes. Due to its efficiency and stability, shear walls are often installed in residential buildings and essential facilities such as nuclear power plants. In this research, to predict the results of the shaking table test of the three-story shear wall RC structure hosted by the Korea Atomic Energy Research Institute, three types of numerical modeling techniques are proposed: Preliminary, Calibrated 1, and Calibrated 2 models, in order of improvement. For the proposed models, an earthquake of the 2016 Gyeongju, South Korea (peak ground acceleration of 0.28 g) and its amplified earthquake (peak ground acceleration of 0.50 g) are input. The response spectra of the measuring points are obtained by numerical analysis. Good agreement is observed in the comparisons between the experiment results and the simulation conducted on the finally adopted numerical model, Calibrated 2. In the process of improving the model, this paper investigates the influences of the mode shape, material properties, and boundary conditions on the structure's seismic behavior.