• Title/Summary/Keyword: essential oil composition

Search Result 226, Processing Time 0.028 seconds

The Composition of Essential Oil from Nepeta cataria and Its Effect on Microorganism

  • Kim, Jong-Hee;Jung, Dae-Ho;Park, Hyun-Kyung
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.381-387
    • /
    • 2006
  • We analyzed the total yields and composition of essential oils in leaf extracts of Nepeta cataria by Gas Chromatography Mass Spectrometry (GC-MS). Thirty-six compounds representing 97.0% of total oil were detected. The major constituents of essential oils in Nepeta cataria were nepetalactone (90.9%), unidentified compound (Retention time 17.35; 1.82%), 1,8-cineol (1.49%), ${\beta}-caryophyllene$ (1.12%), and ${\beta}-pinene$ (1.078%). The volatile compounds in leaf extracts of N. cataria concentrated to nepetalactone ($88.83{\sim}93.33%$) remarkably. In the essential oil of N. cataria cis,trans-nepetalactone ($30.2{\sim}37.8%$) and cis,cis-nepetalactone ($31.5{\sim}37.0%$) were found as the main constituents. The effects of essential oil of N. cataria on the growth of six microorganisms (Bacillus cereus, B. subtilis, B. amyloliquefaciens, Escherichia coli, Staphylococcus aureus subsp. aureus, and Pseudomonas aeruginosa) were investigated. The essential oil of N. cataria had strong inhibitory effect on the growth of three fungal species (Bacillus cereus, B. subtilis, and B. amyloliquefaciens). The essential oil from N. cataria was found to have a low antimicrobial activity against Staphylococcus aureus subsp. aureus, while no activity were found against Escherichia coli and Pseudomonas aeruginosa. Results indicate the significant antimicrobial effect, which may be depended on the yield of nepetalactone.

Production of Volatile Oil Components by Cell Culture of Agastache rugosa O. Kuntze

  • Shin, Seung-Won;Kim, You-Sun;Kang, Chan-Ah
    • Natural Product Sciences
    • /
    • v.7 no.4
    • /
    • pp.120-123
    • /
    • 2001
  • To develop systems for economic production of useful essential oil compounds, callus was induced from the seedlings of Agastache rugosa and cultured on MS medium. The volatile oil fraction was extracted from the callus and investigated by mean of GC-MS. The composition of the oil was compared with that of the mother plant. As a result, sixty five compounds including ferruginol were identified in the essential oil fraction. The main component of the oil from the leaves of Agastache rugosa was methyl chavichol (53.6%). Methyl jasmonate and jasmonic acid were added to the culturing cell suspension, separately and the composition of induced oil were compared. The oils from cultured cells treated with jasmonates showed considerably different patterns. Especially, the peak of estragole was found in callus oil after treatment with methyl jasmonate as though the amount was limited to 0.58%. In general, the TIC pattern of GC-MS of the callus oil became more similar to the oil from the leaves after elicitation.

  • PDF

GC-MS Analyses of the Essential Oils from Ixeris dentate(Thunb.) Nakai and I. stolonifera A. Gray (GC-MS를 이용한 씀바귀 및 좀씀바귀의 정유 성분 분석)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.2
    • /
    • pp.274-283
    • /
    • 2012
  • The volatile flavor compounds of the essential oils from Ixeris dentate (Thunb.) Nakai and I. stolonifera A. Gray were investigated. The essential oils were extracted by hydro distillation extraction method. Ninety-three volatile flavor components were identified from I. dentate (Thunb.) Nakai essential oil. Hexadecanoic acid(33.73%) was the most abundant compound, followed by (Z,Z,Z,)-9,12,15-octadecatrienoic acid(18.59%), 6,10,14-trimethyl-2-pentadecanonel(10.39%) and phytol(5.21%). Ninety-seven volatile flavor components were identified from the essential oil of I. stolonifera A. Gray. Hexadecanoic acid was the most abundant component(39.7%), followed by (Z,Z,Z)-9,12,15-octadecatrienoic acid(12.63%), 9,12-octadecadienoic acid, ethyl ester(12.36%), pentacosane(5.2%) and 6,10,14-trimethyl-2-pentadecanone(3.18%). The volatile composition of I. dentate (Thunb.) Nakai was characterized by higher contents of phytol and phthalides than those of I. stolonifera A. Gray. The volatile flavor composition of I. stolonifera A. Gray can easily be distinguished by the percentage of sesquiterpene compounds against I. dentate (Thunb.) Nakai essential oil.

Chemical Composition and Biological Activity of Essential Oil of Agastache rugosa (Fisch. & C. A. Mey.) O. Kuntze (배초향 에센셜오일의 화학적 조성과 생리활성 특성)

  • Hong, Min Ji;Kim, Ju Ho;Kim, Hee Yeon;Kim, Min Ju;Kim, Song Mun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.95-110
    • /
    • 2020
  • Background: In Korea, Agastache rugosa (Fisch. & C. A. Mey.) O. Kuntze is one of the well-known perennial plants belonging to Lamiaceae. This mint-fragranced plant has long been used for the treatment of abdominal pain, congestion, chills, and diarrhea since the Goryeo Dynasty. Although this plant has various medicinal properties, it is only used as a spice and for landscape purposes. Methods and Results: The objective of this paper was to review the chemical composition and biological properties of the essential oil of A. rugosa. Several studies reported that the essential oil contains more than 60 different chemical components of monoterpene and sesquiterpene hydrocarbons and oxygenated hydrocarbons. The major component is methyl chavicol (estragole), accounting for 64% - 88% of the oil. The chemical composition of this essential oil vaired widely according to the planting time, environmental conditions, planting distance, fertilizer application, and harvesting time. Conclusions: The essential oil of A. rugosa possesses various pharmacological properties such as antioxidant, antibacterial, anticancer, antiviral, nematicidal, antifungal, insecticidal, wrinkle improver, stress reliever, and Alzheimer's disease alleviator. Hence, the essential oil from A. rugosa could be used for the development of high value-added industrial products in the near future.

Efficient Extraction Methods and Analysis of Essential Oil from Softwood leaves (침엽수 잎으로부터 효율적인 정유 추출법 탐색 및 정유성분 분석)

  • 양재경;강병국;김태홍;홍성철;서원택;최명석
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.357-364
    • /
    • 2002
  • For the effecient extraction methods of essential oil, pretreatment of leaves, ratios of water and leaves, extraction time, and collection season from the Chamaecyparis obtusa and Chamaecyparis pisifera leaves were studied. The chemical composition of essential oil was analyzed by GC-MS. The yield of essential oil from ground leaves was higher than that of chopped leaves. The yield of essential oil was not affected much by mixing ratios of water and leaves. The yield of essential oil reached maximum after 5 hours. The content of essential oil of C. obtusa leaves collected during winter was 4.5%, whereas the content of essential oil of C. pisifera collected during fall was 5.3%. The composition of essential oils extracted form C. obrusa and C. pisifera was different. The major constituents in the essential oil of C. obtusa were monoterpene as limonene, terpinene-4-ol, ${\gamma}$-selinene, and a-cedrene, and those of C. pisifera was monoterpens as ${\alpha}$-pinene, myrcene, limonene, bornyl acetate, ${\beta}$- caryophyllene, longifolene, and ${\beta}$-cedrene.

Analysis of Composition and Activity of Essential Oil from Chrysanthemum zawadskii var. latilobum and C. indicum against Antibiotic-Resistant Pathogenic Bacteria

  • Byun, Youn-Hee;Shin, Seung-won
    • Natural Product Sciences
    • /
    • v.14 no.2
    • /
    • pp.138-142
    • /
    • 2008
  • The composition of essential oils from Chrysanthemum zawadskii var. latilobum and C. indicum were analyzed and compared. The results of gas chromatography-mass spectrometry revealed there were distinctly different compositional patterns between C. zawadskii var. latilobum and C. indicum essential oils. The combinatorial effect of the oil of C. zawadskii var. latilobum and C. indicum, with various antibiotics was assessed against antibiotic-susceptible and -resistant strains of Staphylococcus aureus and Streptococcus pneumoniae. The essential oil fraction significantly inhibited most of the tested antibiotic-susceptible and -resistant strains of S. pneumoniae, with minimum inhibiting concentrations (MICs) ranging from 0.5 to 4.0 mg/ml. The fractional inhibiting concentration indices (FICIs) of the oils when combined with antibiotics against S. aureus and S. pneumoniae ranged from 0.26 to 0.75, and showed synergistic or additive effects.

Essential Oil Yields and Chemical Compositions of Chamaecyparis obtuse Obtained from Various Populations and Environmental Factors

  • Kang, Young Min;Min, Ji Yun;Choi, Myung Suk
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.3
    • /
    • pp.285-292
    • /
    • 2014
  • Essential oil yields and chemical compositions from 5 populations of Chamaecyparis obtusa with several environmental factors were investigated through essential oil extracted distillation apparatus and metabolite profiling by GC-MS analysis. Among the populations, content of essential oil at Gokseong was significantly higher than other populations. To compare the several environmental factors affecting on chemical composition and essential oil yields from C. obtuse at Gokseong, the environmental factors (soil condition, temperature, humidity, and moisture content) were measured during 1 year. The essential oils at Goksung based on humidity on March, July, and November was significantly different from other months. The essential oils at Goksung based on temperature on July and August was significantly different from other months. The essential oils at Goksung based on the moisture content on September were significantly different from other months. The percentage of T-N, OM, and yield of oil at Gokseong were significantly different on from other populations. The main constituents of C. obtusa at all populations were ${\alpha}$-pinene, ${\beta}$-pinene, ${\alpha}$-terpinene, ${\gamma}$-terpinene, terpinene-4-ol, isobonyl acetate, terpinyl acetate, and cedar acetate. Specially, Essential oil compositions (%) of ${\alpha}$-terpinene and cedar acetate were higher at Gokseong than at other populations. The chemical compositions of essential oils were variable depend on populations and environmental conditions. Therefore, this study might be used as fundamental research on study for selection of high productive terpenoids and for understanding about biosynthesis of essential oils in C. obtusa.

The Variation of the Major Compounds of Artemisia princeps var. orientalis (Pampan) Hara Essential Oil by Harvest Year (수확 연도에 따른 쑥 정유의 주요 화합물 함량 변화)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.4
    • /
    • pp.533-543
    • /
    • 2015
  • This study investigated the chemical composition of Artemisia princeps var. orientalis (Pampan) Hara (ssuk in Korea) essential oil and the quantitative changes of major terpene compounds according to the time of harvest. The essential oils obtained by hydrodistillation extraction from the aerial parts of ssuk were analyzed by GC and GC-MS. The essential oil composition of ssuk was characterized by higher contents of mono- and sesqui- terpene compounds. Ninety-nine volatile flavor compounds were identified in the essential oil from ssuk harvested in 2010, with camphor (11.9%), ${\beta}-caryophyllene$ (9.11%), dehydrocarveol (8.51%), and borneol (7.72%) being the most abundant compounds. Eighty-three compounds were identified in the essential oil from the plant harvested in 2011, with borneol (12.36%), caryophyllene oxide (12.29%), ${\beta}-caryophyllene$ (10.24%), camphor (9.13%), and thujone (8.4%) being the most abundant compounds. Eighty-four compounds were identified in the essential oil from the plant harvested in 2012, with ${\beta}-caryophyllene$ (20.25%), caryophyllene oxide (14.63%), and thujone (11.55%) being the major compounds. Eighty-nine compounds were identified in the essential oil from the plant harvested in 2013, with thujone (23.11%), alloaromadendrene oxide (12.3%), and ${\beta}-caryophyllene$ (11.48%) being the most abundant compounds. Thujone and aromadendrene oxide contents increased significantly from 2010 to 2013, while camphor and dehydrocarveol contents decreased significantly during those 4 years. The quantitative changes in these 4 compounds according to the time of harvest can served as a quality index for ssuk essential oil. The ecological responses to recent climate changes may be reflected in the chemical components of natural plant essential oils.

Analyses of the Volatile Flavor Composition of Essential Oils from Chrysanthemum zawadskii var. latilobum Kitamura and Aster yomena Makino (구절초와 쑥부쟁이 정유의 휘발성 향기성분 분석)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.3
    • /
    • pp.378-387
    • /
    • 2018
  • This study investigated the volatile flavor composition of essential oils from Chrysanthemum zawadskii var. latilobum Kitamura and Aster yomena Makino. The essential oils obtained by the hydrodistillation extraction method from the aerial parts of the plants were analyzed by gas chromatography (GC) and GC-mass spectrometry (GC-MS). One hundred (95.04%) volatile flavor compounds were identified in the essential oil from the C. zawadskii var. latilobum Kitamura. The major compounds were valencene (10.82%), ${\delta}$-cadinol (9.77%), hexadecanoic acid (8.70%), 2-methyl-4-(2,6,6-trimethylcyclohex-1-enyl) but-2-en-1-ol (3.67%), and 2-(2,4-hexadiynylidene)-1,6-dioxaspiro[4,4]non-3-ene (3.57%). Ninety-eight (93.83%) volatile flavor compounds were identified in the essential oil from the Aster yomena Makino. The major compounds were and 3-eicosyne (13.61%), 9,10,12-octadecatrienoic acid (7.8%), ${\alpha}$-caryophyllene alcohol (6.83%), 9-octadecynoic acid (6.03%), and ${\alpha}$-caryophyllene (5.74%). Although the two plants are apparently very similar, the chemical composition of the essential oils was significantly different in quality and quantity. In the case of C. zawadskii var. latilobum Kitamura, the sesquiterpene, valencene was found to be 10.82%, but it was not identified in A. yomena Makino. ${\delta}$-Cadinol appeared higher in C. zawadskii var. latilobum Kitamura than in A. yomena Makino. A clear characteristic of A. yomena Makino essential oil is that it has a high content of caryophyllene derivatives. The ${\alpha}$-caryophyllene alcohol contained in A. yomena Makino was relatively high at 6.83%, although the compound was not identified in C. zawadskii var. latilobum Kitamura. Also ${\alpha}$-caryophyllene was shown to be higher in A. yomena Makino than in C. zawadskii var. latilobum Kitamura.

Seasonal variations in the content and composition of essential oil from Zanthoxylum piperitum

  • Kim, Jong-Hee
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.195-201
    • /
    • 2012
  • Seasonal variations in the profile and concentrations of essential oil in Zanthoxylum piperitum were investigated by gas chromatography-mass spectrometry. Seasonal changes in the percentages of the main constituents of the essential oil of both leaves and fruits from Z. piperitum varied. Variations in essential oil yield and the amount of monoterpenes and sesquiterpenes in leaves and fruits at different developmental stages were significant. The characteristic content of essential oil in leaves was determined mainly due to the content of monoterpenes, and that in fruits was determined largely due to the sesquiterpenes. Twenty-nine compounds in the oil from Z. piperitum leaves were detected; the major compounds were ${\beta}$-phellandrene (26.90%), citronella (15.32%), ${\beta}$-myrcene (3.24%), ${\alpha}$-pinene (2.79%), trans-caryophyllene (2.66%), and fanesyl acetate (2.30%). The highest yield of oil (43.89%) in Z. piperitum leaves was obtained in May but decreased gradually beginning in June. The yield of essential oil from Z. piperitum leaves during early periods was higher than that during later periods and usually decreased from early maturation stages to subsequent stages. However, in contrast to leaves, the oil yield in Z. piperitum fruit increased in June, and oil yield later in the season was higher than that earlier in the season. These results indicate that the essential oil produced from Z. piperitum leaves at the early developmental stages was stored in leaves, and might be transferred to fruit at the final developmental stages.