• 제목/요약/키워드: eshelby

검색결과 60건 처리시간 0.024초

열팽창 계수의 2차원 해석 모델에 관한 연구 (Study of 2-Dimensional Model for the Thermal Expansion of Composite Materials)

  • 전형진;유상원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.95-98
    • /
    • 2005
  • This paper proposes the solutions predicting the coefficient of the thermal expansion changes of composites which include the fiber-like shaped ($a_1$ > ($a_2$ = ($a_3$) and the disk-like shaped (al = a2> a3) inclusions like two dimensional geometries, which has one aspect ratios, ${\alpha}$ = ($a_1$ /($a_3$). The analysis follows the procedure developed for elastic moduli by using the generalized approach of Eshelby’s equivalent tensor. The influences of the aspect ratios, on the effective coefficient of thermal expansion of composites containing aligned isotropic inclusions are examined. This model should be limited to analyze the composites with unidirectionally aligned inclusions and with complete binding to each other of both matrix and inclusions having homogeneous properties. The coefficient of thermal expansion of composites (${\theta}_{11}$,${\theta}_{22}$and ${\theta}_{33}$) are investigated. From material data of the composites with glass fiber in epoxy resin, the thermal expansions along the aspect ratio were obtained and similar to the Chow model. The longitudinal coefficients of thermal expansion ${\theta}_{11}$decrease, as the aspect ratios increase. However, the transverse coefficients of thermal expansion ${\theta}_{22}$increase or decrease, as the aspect ratios increase. And both of them decrease, as the concentration increases.

  • PDF

Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Advances in nano research
    • /
    • 제5권2호
    • /
    • pp.69-97
    • /
    • 2017
  • In this study, nonlinear response of laminated functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate under low-velocity impact based on the Eshelby-Mori-Tanaka approach in thermal conditions is studied. The governing equations are derived based on higher-order shear deformation plate theory (HSDT) under von $K\acute{a}rm\acute{a}n$ geometrical nonlinearity assumptions. The finite element method with 15 DOF at each node and Newmark's numerical integration method is applied to solve the governing equations. Four types of distributions of the uniaxially aligned reinforcement material through the thickness of the plates are considered. Material properties of the CNT and matrix are assumed to be temperature dependent. Contact force between the impactor and the laminated plate is obtained with the aid of the modified nonlinear Hertzian contact law models. In the numerical example, the effect of layup (stacking sequence) and lamination angle as well as the effect of temperature variations, distribution of CNTs, volume fraction of the CNTs, the mass and the velocity of the impactor in a constant energy level and boundary conditions on the impact response of the CNTRC laminated plates are investigated in details.

Mathematical modelling of the stability of carbon nanotube-reinforced panels

  • Sobhani Aragh, B.
    • Steel and Composite Structures
    • /
    • 제24권6호
    • /
    • pp.727-740
    • /
    • 2017
  • The present paper studies the stability analysis of the continuously graded CNT-Reinforced Composite (CNTRC) panel stiffened by rings and stringers. The Stiffened Panel (SP) subjected to axial and lateral loads is reinforced by agglomerated CNTs smoothly graded through the thickness. A two-parameter Eshelby-Mori-Tanaka (EMT) model is adopted to derive the effective material moduli of the CNTRC. The stability equations of the CNRTC SP are obtained by means of the adjacent equilibrium criterion. Notwithstanding most available literature in which the stiffener effects were smeared out over the respective stiffener spacing, in the present work, the stiffeners are modeled as Euler-Bernoulli beams. The Generalized Differential Quadrature Method (GDQM) is employed to discretize the stability equations. A numerical study is performed to investigate the influences of different types of parameters involved on the critical buckling of the SP reinforced by agglomerated CNTs. The results achieved reveal that continuously distributing of CNTs adjacent to the inner and outer panel's surface results in improving the stiffness of the SP and, as a consequence, inclining the critical buckling load. Furthermore, it has been concluded that the decline rate of buckling load intensity factor owing to the increase of the panel angle is significantly more sensible for the smaller values of panel angle.

굴곡된 탄소나노튜브로 보강된 적층 복합재 판구조의 고유진동 특성 (Natural Frequency Characteristics of Laminated Composite Structures Reinforced by a Wavy CNT)

  • 출템수렌천트;최형배;이상열
    • Composites Research
    • /
    • 제34권2호
    • /
    • pp.123-128
    • /
    • 2021
  • 본 논문은 Mori-Tanaka법, 혼합법칙 및 Halpin-Tsai 이론식을 적용하여 굴곡진 탄소나노튜브(CNT)로 보강된 복합재의 멀티스케일 고유진동 특성을 규명하였다. Eshelby 텐서를 이용하여 곡률을 갖는 CNT가 함유된 폴리머의 하중 전달 특성값이론을 유도하였다. 도출된 수치해석 결과는 기존의 연구결과와 잘 일치하였다. 본 연구에서 제시한 새로운 결과는 적층 복합재의 CNT 함유량, 굴곡성 및 적층배열의 상호작용 특성을 규명하였다. 주요 결과에 대하여 분석하였으며, CNT 보강 복합재의 실용적 설계를 위한 중요 고려사항을 제시하였다.

단섬유 강화 금속 복합재의 충격 해석에 관한 연구 (Impact Analysis of Short Fiber-Reinforced Metal Matrix Composites)

  • 안국찬
    • 한국안전학회지
    • /
    • 제9권3호
    • /
    • pp.3-12
    • /
    • 1994
  • This study employed the Eshelby's equivalent inclusion method incorporated with mean field theory to investigate the Internal stress of short fiber-reinforced metal matrix composites during static loading and the dynamic finite element analysis by using alternative unit cell model to investigate the impact behaviors during the impact loading. Using the 2124 Al-SiC system as an example, the general effects of parameters such as fiber's aspect ratio, content and modulus were examined.

  • PDF

다공성 금속의 성형공정 후 열탄성 계수 (Thermoelastic Properties of Porous Metals After Material Forming Processes)

  • 이종원;김진원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.217-220
    • /
    • 2003
  • The effective thermoelastic properties of porous metals are discussed herein after each material forming process such as hot pressing or extrusion. The voids in metal matrix are assumed to be initially spherical in shape and to be distributed randomly. Once the porous material deforms plastically due to each material forming process, the voids change their shape from a sphere to an ellipsoid and align in one direction. Since the voids are compressible in nature, the void volume fraction is assumed to be decreasing during each material forming process.

  • PDF

미소한 손상경계면을 갖는 입자강화 복합재료의 미세역학 탄성 모델에 관한 연구 (A Micromechanics-based Elastic Model for Particle-Reinforced Composites Containing Slightly Weakened Interfaces)

  • 이행기;표석훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.441-444
    • /
    • 2007
  • This paper presents a part of micormechanics-based elastic modeling (Lee and Pyo, 2007) of particle-reinforced composites containing slightly weakened interfaces. The Eshelby's tensor for a damaged ellipsoidal inclusion to model particles with slightly weakened interfaces is incorporated into a micormechanical formulation by Ju and Chen (1994). A damage model in accordance with the Weibull's probabilistic function is also developed to simulate the progression of weakened interface in the composites.

  • PDF

Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy

  • Selmi, Abdellatif
    • Advances in nano research
    • /
    • 제7권5호
    • /
    • pp.365-377
    • /
    • 2019
  • This paper investigates the effectiveness of Single Walled Carbon Nanotubes, SWNT, in improving the dynamic behavior of cracked Aluminium alloy, Al-alloy, beams by using a method based on changes in modal strain energy. Mechanical properties of composite materials are estimated by the Eshelby-Mori-Tanaka method. The influence of SWNT volume fraction, SWNT aspect ratio, crack depth and crack location on the natural frequencies of the damaged 3D randomly oriented SWNT reinforced Al-alloy beams are examined. Results demonstrate the significant advantages of SWNT in reducing the effect of cracks on the natural frequencies of Al-alloy beams.

다이캐스팅 보의 등가 기공결함을 고려한 강도평가 (Strength Estimation of Die Cast Beams Considering Equivalent Porous Defects)

  • 박문식
    • 대한기계학회논문집A
    • /
    • 제41권5호
    • /
    • pp.337-343
    • /
    • 2017
  • 각종 기공과 같은 결함을 허용하는 다이캐스팅 부품의 강도를 현장 수준에서 평가할 수 있는 이론적 방법을 제안한다. 결함을 갖는 부재의 탄성시험을 통해 강성도를 구하고 이를 결함이 없는 이론적 강성도와 비교함으로써 등가 기공률을 산출한다. 등가 기공률 식은 Eshelby의 함유이론으로부터 유도하였다. 산출된 등가 기공률은 Mori-Tanaka 법을 이용하여 기공결함을 포함하는 재료의 응력-변형률 선도를 그리기 위하여 사용된다. 본 연구에서는 Hollomon 변형경화 모델을 사용하였다. 이 응력-변형률 선도를 이용하면 균일분포의 기공결함을 갖는 다이캐스팅 부재의 강도를 평가할 수 있게 된다. 등가 기공률을 고려한 하나의 이론해로서 직사각형 단면의 다이캐스팅 보에 대한 삼점 굽힘의 탄소성 강도를 소성힌지의 방법으로 유도하였다.

Stress analysis of a two-phase composite having a negative-stiffness inclusion in two dimensions

  • Wang, Yun-Che;Ko, Chi-Ching
    • Interaction and multiscale mechanics
    • /
    • 제2권3호
    • /
    • pp.321-332
    • /
    • 2009
  • Recent development in composites containing phase-transforming particles, such as vanadium dioxide or barium titanate, reveals the overall stiffness and viscoelastic damping of the composites may be unbounded (Lakes et al. 2001, Jaglinski et al. 2007). Negative stiffness is induced from phase transformation predicted by the Landau phase transformation theory. Although this unbounded phenomenon is theoretically supported with the composite homogenization theory, detailed stress analyses of the composites are still lacking. In this work, we analyze the stress distribution of the Hashin-Shtrikman (HS) composite and its two-dimensional variant, namely a circular inclusion in a square plate, under the assumption that the Young's modulus of the inclusion is negative. Assumption of negative stiffness is a priori in the present analysis. For stress analysis, a closed form solution for the HS model and finite element solutions for the 2D composite are presented. A static loading condition is adopted to estimate the effective modulus of the composites by the ratio of stress to average strain on the loading edges. It is found that the interfacial stresses between the circular inclusion and matrix increase dramatically when the negative stiffness is so tuned that overall stiffness is unbounded. Furthermore, it is found that stress distributions in the inclusion are not uniform, contrary to Eshelby's theorem, which states, for two-phase, infinite composites, the inclusion's stress distribution is uniform when the shape of the inclusion has higher symmetry than an ellipse. The stability of the composites is discussed from the viewpoint of deterioration of perfect interface conditions due to excessive interfacial stresses.