• Title/Summary/Keyword: error vector

Search Result 1,426, Processing Time 0.028 seconds

Motion Field Estimation Using U-disparity Map and Forward-Backward Error Removal in Vehicle Environment (U-시차 지도와 정/역방향 에러 제거를 통한 자동차 환경에서의 모션 필드 예측)

  • Seo, Seungwoo;Lee, Gyucheol;Lee, Sangyong;Yoo, Jisang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2343-2352
    • /
    • 2015
  • In this paper, we propose novel motion field estimation method using U-disparity map and forward-backward error removal in vehicles environment. Generally, in an image obtained from a camera attached in a vehicle, a motion vector occurs according to the movement of the vehicle. but this motion vector is less accurate by effect of surrounding environment. In particular, it is difficult to extract an accurate motion vector because of adjacent pixels which are similar each other on the road surface. Therefore, proposed method removes road surface by using U-disparity map and performs optical flow about remaining portion. forward-backward error removal method is used to improve the accuracy of the motion vector. Finally, we predict motion of the vehicle by applying RANSAC(RANdom SAmple Consensus) from acquired motion vector and then generate motion field. Through experimental results, we show that the proposed algorithm performs better than old schemes.

The analysis of EU carbon trading and energy prices using vector error correction model (벡터오차수정모형을 이용한 유럽 탄소배출권가격 분석)

  • Bu, Gi-Duck;Jeong, Ki-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.401-412
    • /
    • 2011
  • This study uses a vector error correction model to analyze the daily time series data of the spot price of EUA (European Union Allowance). As endogenous variables, five variables are considered for the analysis, including prices of crude oil, natural gas, electricity and coal in addition to carbon price. Data period is Phase 2 period (April 21, 2008 to March 31, 2010) to avoid Phase 1 period (2005-2007) where the EUA prices were distorted. Unit-root and cointegration test results reveal that all variables have a unit root and cointegration vectors exist, so a vector error correction model is adopted instead of a vector autoregressive model.

Channel-Adaptive Bidirectional Motion Vector Tracking over Wireless Packet Network (무선 패킷 네트워크에서의 채널 적응형 양방향 움직임 벡터 추적 기술)

  • Pyun, Jae-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.94-101
    • /
    • 2007
  • Streaming video is expected to become a key service in the developing heterogeneous wireless network. However, sufficient quality of service is not offered to video applications because of bursty packet losses. An effective solution for packet loss in wireless network is to perform a proper concealment at the receiver. However, most concealment methods can not conceal effectively the consecutively damaged macro blocks, since the neighboring blocks are lost. In the previous work, bidirectional motion vector tracking (BMVT) method has been proposed which uses the moving trajectory feature of the damaged macro blocks. In this paper, a channel-adaptive redundancy coding method for the better BMVT error concealment is presented. The proposed method provides enhanced video quality at the cost of a little bit overhead in the wireless error-prone network.

Motion Field Estimation Using U-Disparity Map in Vehicle Environment

  • Seo, Seung-Woo;Lee, Gyu-Cheol;Yoo, Ji-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.428-435
    • /
    • 2017
  • In this paper, we propose a novel motion field estimation algorithm for which a U-disparity map and forward-and-backward error removal are applied in a vehicular environment. Generally, a motion exists in an image obtained by a camera attached to a vehicle by vehicle movement; however, the obtained motion vector is inaccurate because of the surrounding environmental factors such as the illumination changes and vehicles shaking. It is, therefore, difficult to extract an accurate motion vector, especially on the road surface, due to the similarity of the adjacent-pixel values; therefore, the proposed algorithm first removes the road surface region in the obtained image by using a U-disparity map, and uses then the optical flow that represents the motion vector of the object in the remaining part of the image. The algorithm also uses a forward-backward error-removal technique to improve the motion-vector accuracy and a vehicle's movement is predicted through the application of the RANSAC (RANdom SAmple Consensus) to the previously obtained motion vectors, resulting in the generation of a motion field. Through experiment results, we show that the performance of the proposed algorithm is superior to that of an existing algorithm.

Optimization of CVQ codebook index for noisy channels (잡음이 존재하는 채널에서 이용되는 분류 벡터 양자화 코드북의 인덱스할당기법)

  • 한종기;김진욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.315-326
    • /
    • 2003
  • Abstract In this paper, an improved index assignment procedure is proposed to reduce the channel error effect in a communication system employing classified vector quantization(CVQ). The proposed algorithm consists of two parts: inner index assignment (IIA) and cross index assignment (CIA). The II A reduces the distortion resulting from the error in order bits, presenting the identity of each code vector in a subcodebook. The CIA modifies the indexes assigned by the IIA in such a way that the effect of the channel error occurring in class bits, indicating the class information of the code vector, can be minimized. Simulation results show that the proposed algorithms enable a reliable communication over noisy channels even without employing the channel encoding. Index Terms Classified vector quantization, index assignment.

Development of the Plywood Demand Prediction Model

  • Kim, Dong-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.2
    • /
    • pp.140-143
    • /
    • 2008
  • This study compared the plywood demand prediction accuracy of econometric and vector autoregressive models using Korean data. The econometric model of plywood demand was specified with three explanatory variables; own price, construction permit area, dummy. The vector autoregressive model was specified with lagged endogenous variable, own price, construction permit area and dummy. The dummy variable reflected the abrupt decrease in plywood consumption in the late 1990's. The prediction accuracy was estimated on the basis of Residual Mean Squared Error, Mean Absolute Percentage Error and Theil's Inequality Coefficient. The results showed that the plywood demand prediction can be performed more accurately by econometric model than by vector autoregressive model.

DTC-PWM control method of PMSM using the flux-torque Band (PMSM의 자속-토크 밴드를 고려한 DTC-PWM 제어 방식)

  • Kim, SeungJun;Park, JunHwi;Kim, Ji-won;Lee, Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.63-65
    • /
    • 2018
  • This paper presents a DTC-PWM(Direct Torque Control-Pluse Width Modulation) method of PMSM(Permanent Magnet Synchronous Motor) using the flux-torque hysteresis band. In order to keep the flux and torque error of the PMSM within the hysteresis band, the optimal PWM duty ratio is calculated by the error of the flux and torque with the flux and torque vector of the selected voltage vector. According to the flux duty ratios and the torque duty ratios, the optimized duty ratio to reduce the errors is selected by the calculated duty ratios. In the proposed method, the selected voltage vector is divided into d-q axis components with a simple method. And the flux duty ratios and torque duty ratios are estimated by the applied voltage vector. The proposed DTC-PWM for PMSM was verified by computer simulation.

  • PDF

A Robust MRAC-based Speed Estimation Method to Improve the Performance of Sensorless Induction Motor Drive System in Low Speed (저속영역에서 센서리스 벡터제어 유도전동기의 성능을 향상시키기 위한 MRAC 기반의 강인한 속도 추정 기법)

  • 박철우;권우현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • A novel rotor speed estimation method using model reference adaptive control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed method, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estimation error is unclear. In the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation. The robustness of the rotor flux-based MRAC, back EMF-based MRAC, and proposed MRAC is compared based on a sensitivity function about each error of stator resistance, rotor time constant, mutual inductance. Consequently, the proposed method is much more robust than the conventional methods as regards errors in the mutual inductance, stator resistance. Therefore, the proposed method offers a considerable improvement in the performance of a sensorless vector controller at a low speed. In addition, the superiority of the proposed method and the validity of sensitivity functions were verified by simulation and experiment.

Attack-Resistant Received Signal Strength based Compressive Sensing Wireless Localization

  • Yan, Jun;Yu, Kegen;Cao, Yangqin;Chen, Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4418-4437
    • /
    • 2017
  • In this paper a three-phase secure compressive sensing (CS) and received signal strength (RSS) based target localization approach is proposed to mitigate the effect of malicious node attack. RSS measurements are first arranged into a group of subsets where the same measurement can be included in multiple subsets. Intermediate target position estimates are then produced using individual subsets of RSS measurements and the CS technique. From the intermediate position estimates, the residual error vector and residual error square vector are formed. The least median of residual error square is utilized to define a verifier parameter. The selected residual error vector is utilized along with a threshold to determine whether a node or measurement is under attack. The final target positions are estimated by using only the attack-free measurements and the CS technique. Further, theoretical analysis is performed for parameter selection and computational complexity evaluation. Extensive simulation studies are carried out to demonstrate the advantage of the proposed CS-based secure localization approach over the existing algorithms.

Moving Pixel Displacement Detection using Correlation Functions on CIS Image

  • Ryu, Kwang-Ryol;Kim, Young-Bin
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.349-354
    • /
    • 2010
  • Moving pixel displacement detection algorithm using correlation functions for making panorama image on the continuous images is presented in this paper. The input images get from a CMOS image sensor (CIS). The camera is maintained by constant brightness and uniform sensing area in test input pattern. For simple navigation and capture image has to 70% overlapped region. A correlation rate in two image data is evaluated by using reference image with first captures, and compare image with next captures. The displacement of the two images are expressed to second order function of x, y and solved with finding the coefficient in second order function. That results in the change in the peak correlation displacement from the reference to the compare image, is moving to pixel length. The navigating error is reduced by varying the path because the error is shown in the difference of the positioning vector between the true pixel position and the navigated pixel position. The algorithm performance is evaluated to be different from the error vector to vary the navigating path grid.