• Title/Summary/Keyword: error vector

Search Result 1,426, Processing Time 0.029 seconds

A Study on the Comparison of Electricity Forecasting Models: Korea and China

  • Zheng, Xueyan;Kim, Sahm
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.675-683
    • /
    • 2015
  • In the 21st century, we now face the serious problems of the enormous consumption of the energy resources. Depending on the power consumption increases, both China and South Korea face a reduction in available resources. This paper considers the regression models and time-series models to compare the performance of the forecasting accuracy based on Mean Absolute Percentage Error (MAPE) in order to forecast the electricity demand accurately on the short-term period (68 months) data in Northeast China and find the relationship with Korea. Among the models the support vector regression (SVR) model shows superior performance than time-series models for the short-term period data and the time-series models show similar results with the SVR model when we use long-term period data.

A Robust Sensorless Vector Control System for Induction Motors

  • Huh Sung-Hoe;Choy Ick;Park Gwi-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.443-447
    • /
    • 2001
  • In this paper, a robust sensorless vector control system for induction motors with a speed estimator and an uncertainty observer is presented. At first, the proposed speed estimator is based on the MRAS(Mode Reference Adaptive System) scheme and constructed with a simple fuzzy logic(FL) approach. The structure of the proposed FL estimator is very simple. The input of the FL is the rotor flux error difference between reference and adjustable model, and the output is the estimated incremental rotor speed Secondly, the unmodeled uncertainties such as parametric uncertainties and external load disturbances are modeled by a radial basis function network(RBFN). In the overal speed control system, the control inputs are composed with a norminal control input and a compensated control input, which are from RBFN observer output and the modeling error of the RBFN, repectively. The compensated control input is derived from Lyapunov unction approach. The simulation results are presented to show the validity of the proposed system.

  • PDF

PU-based Motion Vector Extrapolation for HEVC Error Concealment (HEVC 오류 은닉을 위한 PU 기반 움직임 벡터 외삽법)

  • Kim, Sangmin;Lee, Dong-Kyu;Park, Dongmin;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.209-210
    • /
    • 2014
  • 최근 인터넷 상에서 제공되는 영상 서비스에 대한 요구가 증가하고 있다. 하지만 네트워크 환경에서 전송되는 데이터는 오류로 인하여 쉽게 손실될 수 있다. 특히 HEVC(High Efficiency Video Coding)와 같이 높은 압축률로 압축된 정보에 대한 전송 오류는 영상 복원에 심각한 영향을 끼친다. 따라서 네트워크 환경에서 일정한 화질을 유지하기 위한 오류 은닉(Error Concealment : EC) 방법이 필요하다. 본 논문은 HEVC EC 를 위한 PU(Prediction Unit) 기반 움직임 벡터 외삽법(Motion Vector Extrapolation : MVE) 모델을 제안한다. PU 는 예측의 기본 단위로써 PU 내에 동일한 물체가 포함될 확률이 높다. 따라서, 이 모델은 손실된 프레임의 이전 프레임이 갖는 PU 정보를 이용하여 PU 단위로 외삽(extrapolation)을 실시한다. 또한, 손실된 블록과 외삽 블록간의 관계를 고려하여 겹쳐진(overlapped) 외삽 블록 중 가장 작은 PU 크기를 EC 기본 단위로 결정한다. 이 방법은 PU 정보를 반영함으로써 블록 경계 오류(block artifact)를 감소시킨다.

  • PDF

Optimal Selection of Master States for Order Reduction (동적시스템의 차수 줄임을 위한 주상태의 최적선택)

  • 오동호;박영진
    • Journal of KSNVE
    • /
    • v.4 no.1
    • /
    • pp.71-82
    • /
    • 1994
  • We propose a systematic method to select the master states, which are retained in the reduced model after the order reduction process. The proposed method is based on the fact that the range space of right eigenvector matrix is spanned by orthogonal base vectors, and tries to keep the orthogonality of the submatrix of the base vector matrix as much as possible during the reduction process. To quentify the skewness of that submatrix, we define "Absolute Singularity Factor(ASF)" based on its singular values. While the degree of observability is concerned with estimation error of state vector and up to n'th order derivatives, ASF is related only to the minimum state estimation error. We can use ASF to evaluate the estimation performance of specific partial measurements compared with the best case in which all the state variables are identified based on the full measurements. A heuristic procedure to find suboptimal master states with reduced computational burden is also proposed. proposed.

  • PDF

Induction Motor Position Controller Based on Rotational Motion Equations

  • Salem, Mahmoud M.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.268-274
    • /
    • 2008
  • This paper presents a proposed position controller for a vector controlled induction motor. The position controller design depends on the rotational motion equations and a classical speed controller (CSC) performance. The CSC is designed to have the ability to track variable reference inputs and to provide a predefined system performance. Standard position controller in industry is presented to analyze its performance and its drawbacks. Then the proposed position controller is designed, based on the well defined rotational motion equations. The proposed position controller and the CSC are applied to control the position and speed of the vector controlled induction motor with different ratings. Simulation results at different operating conditions are presented to evaluate the proposed controllers' performance. The results show that the CSC can drive the motor with a predefined speed performance and can track a variable reference speed with an approximately zero steady state error. The results also show that the proposed position controller has the ability to effect high-precision positioning in a limited time and to track a variable reference position with a zero steady state error.

Development of Solar Power Output Prediction Method using Big Data Processing Technic (태양광 발전량 예측을 위한 빅데이터 처리 방법 개발)

  • Jung, Jae Cheon;Song, Chi Sung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • A big data processing method to predict solar power generation using systems engineering approach is developed in this work. For developing analytical method, linear model (LM), support vector machine (SVN), and artificial neural network (ANN) technique are chosen. As evaluation indices, the cross-correlation and the mean square root of prediction error (RMSEP) are used. From multi-variable comparison test, it was found that ANN methodology provides the highest correlation and the lowest RMSEP.

A Temporal Error Concealment based on Motion Vector Recovery for H.264/AVC

  • Wu, Jun;Liu, Xingang;Yoo, Kook-Yeol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.341-344
    • /
    • 2007
  • In this paper, a new temporal error concealment method for the new coding standard H.264/AVC is presented, which uses the high correlation between the motion vectors of neighboring blocks. By using the motion vector of neighboring MB of the lost MB, the MV of the lost MB are recovered. It is shown that under FMO coding method of H.264/AVC, the proposed method increases PSNR gain up to 2.85dB compared to build-in algorithm in the H.264/AVC test model and 2.59dB compared to Lagrange interpolation.

  • PDF

Development of High-resolution 3-D PIV Algorithm by Cross-correlation (고해상도 3차원 상호상관 PIV 알고리듬 개발)

  • Kim, Mi-Young;Choi, Jang-Woon;Lee, Hyun;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.410-416
    • /
    • 2001
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity field of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. In this study, stereo photogrammetty was applied for the 3-D matching of tracer particles. Epipolar line was used to decect the stereo pair. 3-D CFD data was used to estimate algorithm. 3-D position data of the first frame and the second frame was used to find velocity vector. Continuity equation was applied to extract error vector. The algorithm result involved error vecotor of about 0.13 %. In Pentium III 450MHz processor, the calculation time of cross-correlation for 1500 particles needed about 1 minute.

  • PDF

An Analysis of Optimal Link Voltage of VS-SVPWM for Current Harmonics Reduction

  • Lee Dong-Hee;Park Han-Woong;Ahn Jin-Woo;Kwon Young-Ahn
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.343-346
    • /
    • 2002
  • In recent, complex SVPWM (Space Vector PWM) algorithm can be easily implemented by high performance microprocessor and DSP. Various SVPWM techniques are widely studied due to the advantages of low harmonic distortion and high use ratio of D.C. link voltage. Most of various studies for improving of VS-PWM inverter performance are concentrated about switching pattern and zero pulse pattern split algorithms. However, dc link voltage that is determined at rated load and speed conditions is not proper in the low speed and under rated load. In this paper, analysis of current ripple with digitally implemented SVPWM inverter is introduced according to link voltage. The optimal link voltage in the designed inverter system and load condition is provided in order to suppress output voltage error and current ripple. As remaining the effective voltage vector interval per sampling period sufficiently, additional voltage error and current ripple are suppressed. The proposed algorithm is verified through digital simulation and experimental results.

  • PDF

Adaptive Speed Identification for Sensorless Vector Control of Induction Motors with Torque (토크를 물리량으로 가지는 적응제어 구조의 센서리스 벡터제어)

  • 김도영;박철우;최병태;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.230-230
    • /
    • 2000
  • This paper describes a model reference adaptive system(MRAS) for speed control of vector-controlled induction motor without a speed sensor. The proposed approach is based on observing the instantaneous torque. The real torque is calculated by sensing stator current and estimated torque is calculated by stator current that is calculated by using estimated rotor speed. The speed estimation error is linearly proportional to error between real torque and estimated torque. The proposed feedback loop has linear component. Furthermore proposed method is robust to parameters variation. The effectiveness is verified by equation and simulation

  • PDF