• 제목/요약/키워드: error term

검색결과 1,002건 처리시간 0.031초

미세 환경조건에 따른 콘크리트 탄산화 깊이 예측 (Prediction of Depth of Concrete Carbonation According to Microenvironmental Conditions)

  • 박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.158-159
    • /
    • 2021
  • When the porous concrete is exposed to the external environment, the internal relative humidity changes from time to time due to the inflow and outflow of moisture. This change in moisture is affected by temperature. The temperature and humidity of concrete is dominant in the carbonation rate, the largest cause of deterioration of concrete. In this study, actual weather data were used as boundary conditions. A carbonization model of concrete temperature and humidity and calcium hydroxide was constructed to perform long-term analysis. There is a slight error in the carbonation formula of the Japanese Academy of Architecture applying the Kishtani coefficient, a representative experimental formula related to carbonization, and the analysis result values. However, considering that it behaves very similarly, it is thought that a fairly reliable numerical analysis model has been established. A slight error is believed to be due to the fact that the amount of residual calcium hydroxide in the carbonated site has not yet been clearly identified.

  • PDF

A Study on the Lifetime Prediction of Lithium-Ion Batteries Based on the Long Short-Term Memory Model of Recurrent Neural Networks

  • Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.236-241
    • /
    • 2024
  • Due to the recent emphasis on carbon neutrality and environmental regulations, the global electric vehicle (EV) market is experiencing rapid growth. This surge has raised concerns about the recycling and disposal methods for EV batteries. Unlike traditional internal combustion engine vehicles, EVs require unique and safe methods for the recovery and disposal of their batteries. In this process, predicting the lifespan of the battery is essential. Impedance and State of Charge (SOC) analysis are commonly used methods for this purpose. However, predicting the lifespan of batteries with complex chemical characteristics through electrical measurements presents significant challenges. To enhance the accuracy and precision of existing measurement methods, this paper proposes using a Long Short-Term Memory (LSTM) model, a type of deep learning-based recurrent neural network, to diagnose battery performance. The goal is to achieve safe classification through this model. The designed structure was evaluated, yielding results with a Mean Absolute Error (MAE) of 0.8451, a Root Mean Square Error (RMSE) of 1.3448, and an accuracy of 0.984, demonstrating excellent performance.

비-가우시안 잡음하의 적응 시스템을 위한 바이어스된 영-오차확률 (Biased Zero-Error Probability for Adaptive Systems under Non-Gaussian Noise)

  • 김남용
    • 인터넷정보학회논문지
    • /
    • 제14권1호
    • /
    • pp.9-14
    • /
    • 2013
  • 영-오차확률 성능 기준은 오차 샘플들이 직류 바이어스 잡음의 영향을 받을 때 적응 시스템에 사용되기에는 제약이 따른다. 이 논문에서는 바이어스 변수를 오차 분포에 도입하고 바이어스된 오차확률에서 오차를 0 으로 하여 새로운 성능 기준인 바이어스된 영-오차확률을 제안하였다. 또한, 확장 필터 구조를 기반으로 제안된 성능 기준을 최대화 함으로써 적응 알고리듬을 도출하였다. 통신 채널 등화에 대한 시뮬레이션 결과로부터 제안된 성능기준에 기반한 이 알고리듬이 강한 충격성 잡음과 직류-바이어스 잡음의 환경에서 동요 없이 오차 샘플들을 0 으로 집중시키는 성능을 보였다.

오차수정모형을 이용한 갈치 시장가격 간의 인과관계 분석 (A Causality Test on Hairtail Prices among Import and Domestic Markets Using a Vector Error Correction Model(VECM))

  • 김규민;김도훈
    • Ocean and Polar Research
    • /
    • 제40권1호
    • /
    • pp.49-58
    • /
    • 2018
  • This study aimed to analyze the causality of hairtail prices among import and domestic distribution channels using a Vector Error Correction Model(VECM). The results are as follows. First, since the ADF unit-root test suggests that each of the price variables, apart from retail price, has a unit root, the price variables should be 1st-differenced to secure the stability of the prices. Next, through the Johansen co-integration test, it was discovered that there are long-term relationships among the price variables. On the basis of the co-integration test, VECM analysis shows that the producer price has a long-run balance with the import and wholesale prices. In particular, when the prices deviate from the balance, the producer price dynamically adjusts to return to the long-term relationship among prices. It also indicates that the producer price has an impact on the import, wholesale, and retail prices in the short-term, and the import price has an influence on the producer and wholesale prices. In addition, the impulse response analysis demonstrates that the impulse of import and producer prices has a lasting impact on each of the prices.

ARIMA를 활용한 실시간 SCR-HP 밸브 온도 수집 및 고장 예측 (Real-time SCR-HP(Selective catalytic reduction - high pressure) valve temperature collection and failure prediction using ARIMA)

  • 이수환;홍현지;박지수;염은섭
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.62-67
    • /
    • 2021
  • Selective catalytic reduction(SCR) is an exhaust gas reduction device to remove nitro oxides (NOx). SCR operation of ship can be controlled through valves for minimizing economic loss from SCR. Valve in SCR-high pressure (HP) system is directly connected to engine exhaust and operates in high temperature and high pressure. Long-term thermal deformation induced by engine heat weakens the sealing of the valve, which can lead to unexpected failures during ship sailing. In order to prevent the unexpected failures due to long-term valve thermal deformation, a failure prediction system using autoregressive integrated moving average (ARIMA) was proposed. Based on the heating experiment, virtual data mimicking temperature range around the SCR-HP valve were produced. By detecting abnormal temperature rise and fall based on the short-term ARIMA prediction, an algorithm determines whether present temperature data is required for failure prediction. The signal processed by the data collection algorithm was interpolated for the failure prediction. By comparing mean average error (MAE) and root mean square error (RMSE), ARIMA model and suitable prediction instant were determined.

ESG(Environmental, Social, Governance)가 발전기업의 성과에 미치는 영향 (Impact of ESG (Environmental, Social, Governance) on the Performance of Electric Utilities)

  • 고병국;이규환;윤용범;박수진
    • 신재생에너지
    • /
    • 제18권2호
    • /
    • pp.60-72
    • /
    • 2022
  • The environmental, social, and governance (ESG) score is gaining recognition as important nonfinancial investment criteria. With climate change emerging as a global issue, energy companies must pay attention to the ESG impact on corporate performance. In this study, the ESG impact on the performance of energy companies was analyzed based on 23 companies selected from the S&P 500. The panel corrected standard error methodology was used. The Refinitiv ESG score was the independent variable, and financial performance metrics, such as Tobin's Q, return on assets, and return on equity, were the dependent variables. It was found that the ESG score is positively associated with long-term corporate value but not with short-term profitability in the electricity utility industry. Among the subcategories of ESG, the environmental and social scores also showed positive correlations with long-term corporate value. A direct incentive policy is recommended that can offset expenses for ESG activities to reduce carbon emission in the energy sector.

Optimize rainfall prediction utilize multivariate time series, seasonal adjustment and Stacked Long short term memory

  • Nguyen, Thi Huong;Kwon, Yoon Jeong;Yoo, Je-Ho;Kwon, Hyun-Han
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.373-373
    • /
    • 2021
  • Rainfall forecasting is an important issue that is applied in many areas, such as agriculture, flood warning, and water resources management. In this context, this study proposed a statistical and machine learning-based forecasting model for monthly rainfall. The Bayesian Gaussian process was chosen to optimize the hyperparameters of the Stacked Long Short-term memory (SLSTM) model. The proposed SLSTM model was applied for predicting monthly precipitation of Seoul station, South Korea. Data were retrieved from the Korea Meteorological Administration (KMA) in the period between 1960 and 2019. Four schemes were examined in this study: (i) prediction with only rainfall; (ii) with deseasonalized rainfall; (iii) with rainfall and minimum temperature; (iv) with deseasonalized rainfall and minimum temperature. The error of predicted rainfall based on the root mean squared error (RMSE), 16-17 mm, is relatively small compared with the average monthly rainfall at Seoul station is 117mm. The results showed scheme (iv) gives the best prediction result. Therefore, this approach is more straightforward than the hydrological and hydraulic models, which request much more input data. The result indicated that a deep learning network could be applied successfully in the hydrology field. Overall, the proposed method is promising, given a good solution for rainfall prediction.

  • PDF

Application of the Weibull-Poisson long-term survival model

  • Vigas, Valdemiro Piedade;Mazucheli, Josmar;Louzada, Francisco
    • Communications for Statistical Applications and Methods
    • /
    • 제24권4호
    • /
    • pp.325-337
    • /
    • 2017
  • In this paper, we proposed a new long-term lifetime distribution with four parameters inserted in a risk competitive scenario with decreasing, increasing and unimodal hazard rate functions, namely the Weibull-Poisson long-term distribution. This new distribution arises from a scenario of competitive latent risk, in which the lifetime associated to the particular risk is not observable, and where only the minimum lifetime value among all risks is noticed in a long-term context. However, it can also be used in any other situation as long as it fits the data well. The Weibull-Poisson long-term distribution is presented as a particular case for the new exponential-Poisson long-term distribution and Weibull long-term distribution. The properties of the proposed distribution were discussed, including its probability density, survival and hazard functions and explicit algebraic formulas for its order statistics. Assuming censored data, we considered the maximum likelihood approach for parameter estimation. For different parameter settings, sample sizes, and censoring percentages various simulation studies were performed to study the mean square error of the maximum likelihood estimative, and compare the performance of the model proposed with the particular cases. The selection criteria Akaike information criterion, Bayesian information criterion, and likelihood ratio test were used for the model selection. The relevance of the approach was illustrated on two real datasets of where the new model was compared with its particular cases observing its potential and competitiveness.

Optical 센서를 갖는 AGV의 경로추적에 대한 연구 (A Study on the Path-Tracking of Optically Guided AGV)

  • 류제영;한철용;조덕영;허욱열;임일선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.500-502
    • /
    • 1999
  • This thesis deals with study and implementation of a cross-coupling controller which can enhance the path-tracking performance of optically guided AGV(Automated Guided Vehicle). The AGV in this thesis is differential drive type and has front-side and rear-side optical sensors, which can identify the guiding path. When AGV from the path due to the inevitable error and the deviation must be corrected. It has been shown that compensation only the first term can lead to undesirable oscillatory results and even instability but compensating only the second term leads to a steady state offset error. Cross-coupling control directly minimizes the error by coordinating the motion of the two drive wheels. The cross-coupling controller is analyzed to evaluate its performance. The cross-coupling controller enhances transient performance of the controller is demonstrated by simulation and is compared with that of individual loop controller.

  • PDF

6자유도 정밀 스테이지의 추종제어를 위한 슬라이딩 모드 제어기 설계 (Design of a Robust Position Tracking Controller with Sliding Mode for a 6-DOF Micropositioning Stage)

  • 문준희;이봉구
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.121-128
    • /
    • 2011
  • As high precision industries such as semiconductor, TFT-LCD manufacturing and MEMS continue to grow, the demand for higher DOF precision stages has been increasing. In general, the stages should accommodate a prescribed range of payloads in order to position various precision manufacturing/inspection instruments. Therefore a nonlinear controller using sliding motion is developed, which bears mass perturbation and makes the upper plate of the stage move in 6 DOF. For the application of the nonlinear control, an observer is also developed based on expected noise covariance. To eliminate the steady state error of step response, integral terms are inserted into the state-space model. The linear term of the controller is designed using optimization scheme in which parameters can be weighted according to their physical significance, whereas the nonlinear term of the controller is designed using trial and error method. A comprehensive simulation study proves that the designed controller is robust against mass perturbation and completely eliminates steady state errors.