• Title/Summary/Keyword: error range

Search Result 2,811, Processing Time 0.028 seconds

The Influence of Assay Error Weight on Gentamicin Pharmacokinetics Using the Bayesian and Nonlinear Least Square Regression Analysis in Appendicitis Patients

  • Jin, Pil-Burm
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.598-603
    • /
    • 2005
  • The purpose of this study was to determine the influence of weight with gentamicin assay error on the Bayesian and nonlinear least squares regression analysis in 12 Korean appen dicitis patients. Gentamicin was administered intravenously over 0.5 h every 8 h. Three specimens were collected at 48 h after the first dose from all patients at the following times, just before regularly scheduled infusion, at 0.5 h and 2 h after the end of 0.5 h infusion. Serum gentamicin levels were analyzed by fluorescence polarization immunoassay technique with TDxFLx. The standard deviation (SD) of the assay over its working range had been determined at the serum gentamicin concentrations of 0, 2, 4, 8, 12, and 16 ${\mu}g$/mL in quadruplicate. The polynominal equation of gentamicin assay error was found to be SD (${\mu}g$/mL) = 0.0246-(0.0495C)+ (0.00203C$^2$). There were differences in the influence of weight with gentamicin assay error on pharmacokinetic parameters of gentamicin using the nonlinear least squares regression analysis but there were no differences on the Bayesian analysis. This polynominal equation can be used to improve the precision of fitting of pharmacokinetic models to optimize the process of model simulation both for population and for individualized pharmacokinetic models. The result would be improved dosage regimens and better, safer care of patients receiving gentamicin.

Digital Conversion Error Analysis in a Time-to-Digital Converter (시간-디지털 변환기에서 디지털 변환 에러 분석)

  • Choi, Jin-Ho;Lim, In-Tack
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.520-521
    • /
    • 2017
  • The converted error is occurred by the time difference between the time interval signal and the clock in a Time-to-Digital Converter of counter-type. If the clock period is $T_{CLOCK}$ the converted error is a maximum $T_{CLOCK}$ by the time difference between the start signal and the clock. And the converted error is a maximum $-T_{CLOCK}$ by the time difference between the stop signal and the clock. However, when the clock is synchronized with the start signal and the colck is generated during the time interval signal the range of converted digital error is from 0 to $(1/2)T_{CLOCK}$.

  • PDF

Assay Error for Improved Pharmacokinetic Modeling and Simulation of Vancomycin (반코마이신의 약물동태학적 모델링과 시뮬레이션의 향상을 위한 분석오차)

  • Burm, Jin Pil
    • YAKHAK HOEJI
    • /
    • v.57 no.1
    • /
    • pp.32-36
    • /
    • 2013
  • The purpose of this study was to determine the influence of assay error for improved pharmacokinetic modeling and simulation of vancomycin on the Bayesian and nonlinear least squares regression analysis in 24 Korean gastric cancer patients. Vancomycin 1.0 g was administered intravenously over 1 hr every 12 hr. Three specimens were collected at 72 hr after the first dose from all patients at the following times, at 0.5 hr before regularly scheduled infusion, at 0.5 hr and 2 hr after the end of 1 hr infusion. Serum vancomycin levels were analyzed by fluorescence polarization immunoassay technique with TDX-FLX. The standard deviation (SD) of the assay over its working range had been determined at the serum vancomycin concentrations of 0, 20, 40, 60, 80 and $120{\mu}g/ml$ in quadruplicate. The polynomial equation of vancomycin assay error was found to be SD $({\mu}g/ml)=0.0224+0.0540C+0.00173C^2$ ($R^2=0.935$). There were differences in the influence of weight with vancomycin assay error on pharmacokinetic parameters of vancomycin using the nonlinear least squares regression analysis but there were no differences on the Bayesian analysis. This polynomial equation can be used to improve the precision of fitting of pharmacokinetic models to optimize the process of model simulation both for population and for individualized pharmacokinetic models. The result suggests the improvement of dosage regimens for the better and safer care of patients receiving vancomycin.

Study on Error Reduction in Dual Wavelength Digital Holography Using Modified Fine Map (수정된 화인 맵을 이용한 2-파장 홀로그래피와 잡음 제거 연구)

  • Yu, Young-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.129-133
    • /
    • 2011
  • Dual-wavelength holography has better axial range than single-wavelength holography, allowing unambiguous phase imaging but at the expense of increased noise. We have studied error reduction in dual wavelength holography using a modified fine map. The fine map is successful in measurement and has shown error reduction when the height of the object is less than the appled wavelength, but is unstable when the step height is larger than that wavelength. We have modified the fine map and we have found that the modified fine map was successful in measurement and error reduction even though the height of object was larger than the wavelength.

Single Frequency GPS Relative Navigation for Autonomous Rendezvous and Docking Mission of Low-Earth Orbit Cube-Satellites

  • Shim, Hanjoon;Kim, O-Jong;Yu, Sunkyoung;Kee, Changdon;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.357-366
    • /
    • 2020
  • This paper addressed a relative navigation method for autonomous rendezvous and docking of cube-satellites using single frequency Differential GPS (DGPS) under the intermittent communication between satellites. Since the ionospheric error of GPS measurement is variable depending on the visible satellites, a few meters error of relative navigation is occurred in the Low-Earth Orbit (LEO) environment. Therefore, it is essential to remove the ionospheric error to perform relative navigation. Besides, an intermittent communication period for receiving GPS measurements of the target satellite is limited for getting information every sampling time. To solve this problem, a method combining range domain DGPS and orbit propagation is proposed in this paper. The proposed method improves the performance of DGPS by using Hatch filter and solves an intermittent communication problem by estimating the relative position and velocity using Hill-Clohessy-Wiltshire Equation. Through the simulation, it is verified that the suggested algorithm provides the relative position error within RMS 0.5 m and the relative velocity error within RMS 3 cm/s. Furthermore, it has the advantage that it is suitable for real-time implementation using single-frequency GPS measurements and is computationally efficient.

A Study on the Errors for the Improved Version of the Virtual Transmission-Line Model (개선된 가상의 전송선로 모델의 오차 연구)

  • 조유선;김세윤;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.971-981
    • /
    • 2002
  • An open-ended coaxial probe method has been considered as one of effective tools for measuring electrical properties of its contacted material without shaping and fitting. The measured reflection coefficient at the probe's end is able to convert into the corresponding complex permittivity by employing the improved version of virtual transmission-line model Presented by our lab already. But the error of complex permittivity converted by equivalent model increases as the operating frequency ascends high. The errors of complex permittivity in the open-ended coaxial probe can be yielded compositively by the imperfect contact or probe, manufacture error of probe and complex permittivity error of reference material etc. Therefore it is necessary to limit the problem to identify the error causes in high frequency. In this paper, the errors which are resulted from the measurement of reflection coefficient are removed by using the FDTD(Finite-Difference Time-Domain) method, the error causes are limited the conversion model problem. And the error study of the improved conversion model is performed from several viewpoints. At first, the local minimum of parameter to be calculated by the iteration method in the conversion model is checked. At second, the modeling of the equivalent model is checked in the frequency range. From this study, we know the valid range of the improved conversion model.

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

High-linearity voltage-controlled current source circuits with wide range current output (넓은 범위의 전류 출력을 갖는 고선형 전압-제어 전류원 회로)

  • Cha, Hyeong-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.395-398
    • /
    • 2004
  • High-linearity voltage-controlled current sources (VCCSs) circuits for wide voltage-controlled oscillator and automatic gun control were proposed. The VCCS consists of emitter follower for voltage input, two common-base amplifier which their emitter connected for current output, and current mirror which connected the two amplifier for large output current. The VCCS used only five transistors and a resistor without an extra bias circuit. Simulation results show that the VCCS has current output range from 0mA to 300mA over the control voltage range from 1V to 4.8V at supply voltage 5V. The linearity error of output current has less than $1.4\%$ over the current range from 0A to 300mA.

  • PDF

Target Tracking System for an Intelligent Wheelchair Using Infrared Range-finder and CCD Camera (적외선 레인지파인더와 CCD 카메라를 이용한 지능 휠체어용 표적 추적 시스템)

  • Ha Yun-Su;Han Dong-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.560-570
    • /
    • 2005
  • In this paper, we discuss the tracking system for a wheelchair which can follow the path of a human target such as a nurse in hospital. The problem of human tracking is that it requires recognition of feature as well as the tracking of human positions. For this purpose the use of a high cost visual sensor such as laser finder or streo camera makes the tracking a high cost additional expense. This paper proposes the tracking system uses a low cost infrared range-finder and CCD camera, The Infrared range-finder and CCD camera can create a target candidate through each target recognition algorithm. and this information is fused in order to reduce the uncertainties of a target decision and correct the positional error of the human. The effectiveness of the proposed system is verified through experiments.

A Comparative Study of a Variable Overlap-area Type and Conventional Types in the Inductive Precision Position Measurement System (자속경로 단면적 및 공극변화를 이용한 인던턴스형 초정밀 변위측정 시스템)

  • Choe, Dong-Jun;Choe, In-Muk;Kim, Su-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.254-259
    • /
    • 2002
  • A variable air-gap type system is widely used for inductive precision position measurement systems. This type transducer has high sensitivity but lacks a linear measurement range due to structural nonlinearity. Furthermore, as measurement range increases, linearity error is also increased. The alternative is a variable overlap-area type system. The sensitivity of this type is determined by the initial air-gap dimension, keeps the original value and does not deteriorate linearity in spite of the variations of the measuring range.