• Title/Summary/Keyword: error estimate

Search Result 2,291, Processing Time 0.042 seconds

Within Field Distribution Pattern and Design of a Sampling Plan for Damaged Onions by the Onion maggot, Hylemya antiqua Meigen(Diptera: Anthomyiidae) (고자리파리에 의한 양파피해(被害)의 포장내(圃場內) 분포양식(分布樣式)과 피해량(被害量) 추정(推定)을 위한 표본추출(標本抽出) 계획(計劃))

  • Park, C.G.;Hyun, J.S.;Cho, D.J.;Lee, K.S.;Hah, J.K.
    • Korean journal of applied entomology
    • /
    • v.24 no.1 s.62
    • /
    • pp.29-33
    • /
    • 1985
  • Every plant in $990m^2$ onion field was inspected for damages by the onion maggot. Maps were constructed every ten days to show which plants were infested and which were not from April 11 to May 21, 1984. The maps were sectioned into squares one of which contains 80 onion plants and the counts of damaged onions in each square were fitted to poisson and negative binomial distribution and tested by chi-square. We argue that the satisfactory fitness of the expected negative binomial $[P(x^2)>0.05]$ provided a useful description of the spatial distribution patterns of the damaged onions. Edge effect was tested by the differences of damage ratio and variance/mean ratio (${\sigma}^2/m$) between edge and center part. The result showed that the damage ratioes and variances of all the periods, ${\sigma}^2/m$ values after May 1 were greater in edge part than in center part. Again, the maps were sectioned into four blocks and the squares (sample units) were sectioned into quadrants. By application of the variance component technique, it was suggested that $2{\sim}8$ sample units for 5% sampling error and $1{\sim}2$ sample units for 10% error should be sampled randomly to estimate the damage ratio when $2{\sim}3$ quadrants were inspected.

  • PDF

Estimation of Forest Soil Carbon Stocks with Yasso using a Dendrochronological Approach (연륜연대학적 접근을 이용한 Yasso 모델의 산림토양탄소 저장량 추정)

  • Lee, Ah Reum;Noh, Nam Jin;Yoon, Tae Kyung;Lee, Sue Kyoung;Seo, Kyung Won;Lee, Woo-Kyun;Cho, Yongsung;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.791-798
    • /
    • 2009
  • The role of forest and soil carbon under global climate change is getting important as a carbon sink and it is necessary to research on applicable forest models as well as in the field for a study of these dynamics. On this study, historical annual litter dataset as a major input data for the forest soil carbon model, Yasso was established using a dendrochronological reconstruction method, and the soil carbon dynamics of a Pinus densiflora forest in Gwangneung, Korea was simulated using Yasso. The amount of litter (needle, branch, stem and fine root) production, which was estimated using the dendrochronological method, has increased continuously from 1971 to 2006. Furthermore, there was no significant error between estimated and measured values of litter production (needle and branch) in 2006. The average of simulated soil carbon stock up to 30 cm depth was $46.30{\pm}4.28tCha^{-1}$, which accounted for 53% of carbon stock in trees of the forest, and had no significant difference and error with measured soil carbon stock. Under the climate change trend in Korea according to IPCC A1B scenario, it was estimated that the simulated soil carbon stock in the region would increase continuously from 1971 to 2041 and then decreased until 2100. Compared to the result of the scenario that there is no climate change, the soil carbon stock could be decreased up to 7.58% at 2100. It was inferred the dendrochronological reconstruction method and simulation of Yasso model are useful to estimate soil carbon dynamics of the natural P. densiflora forest. Follow-up researches, such as improvement of the dendrochronological method and Yasso model and their application and validation in various environment, are needed to produce more reliable results.

Estimation of Genetic Parameter for Linear Type Traits in Holstein Dairy Cattle in Korea (Holstein종 젖소의 선형심사형질에 대한 유전모수추정)

  • Lee, Ki-Hwan;Sang, Byung-Chan;Nam, Myoung-Soo;Do, Chang-Hee;Choi, Jae-Gwan;Cho, Kawng-Hyun
    • Journal of Animal Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.345-352
    • /
    • 2009
  • This study utilized 332,625 records of linear type scores consisting for 15 primary traits, 22,175 final score and 84,612 pedigree information of 22,175 Holstein cows from 1993 to 2007 in Korea to estimate genetic parameters for 16 type traits. Genetic and error (co)variances between two traits selected from 16 traits were estimated using bi-trait pairwise analyses with DFREML package. The estimated heritabilities for stature (ST), strength (STR), body depth (BD), dairy form (DF), rump angle (RA), thurl width (TW), rear legs side view (RLSV), foot angle (FA), fore udder attachment (FUA), rear udder height (RUH), rear udder width (RUW), udder cleft (UC), udder depth (UD), front teat placement (FTP), front teat length (FTL) and final score (FS) were 0.31, 0.21, 0.25, 0.10, 0.29, 0.19, 0.09, 0.06, 0.12, 0.13, 0.12, 0.08, 0.26, 0.20, 0.28 and 0.15, respectively. ST had the highest positive genetic correlation with BD (0.90), while RLSV had the highest negative genetic correlation with FA (-0.56). RA had negative genetic correlation with most udder traits (-0.17~-0.02). Especially, RUW had the higher positive genetic correlation with STR (0.60), BD (0.62), and TW (0.49), however, UD had the higher negative genetic correlation with STR (-0.40) and BD (-0.40). FTL had negative genetic correlation with FUA, RUH, RUW, UC and UD. FS had positive genetic correlation with UC, UD and FTP (0.12, 0.18 and 0.20). However, additional research is needed on the use of these parameters in the genetic evaluation because estimated genetic and error variance-covariance matrices were not positive definite.

Measurement of Two-Dimensional Velocity Distribution of Spatio-Temporal Image Velocimeter using Cross-Correlation Analysis (상호상관법을 이용한 시공간 영상유속계의 2차원 유속분포 측정)

  • Yu, Kwonkyu;Kim, Seojun;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.6
    • /
    • pp.537-546
    • /
    • 2014
  • Surface image velocimetry was introduced as an efficient and sage alternative to conventional river flow measurement methods during floods. The conventional surface image velocimetry uses a pair of images to estimate velocity fields using cross-correlation analysis. This method is appropriate to analyzing images taken with a short time interval. It, however, has some drawbacks; it takes a while to analyze images for the verage velocity of long time intervals and is prone to include errors or uncertainties due to flow characteristics and/or image taking conditions. Methods using spatio-temporal images, called STIV, were developed to overcome the drawbacks of conventional surface image velocimetry. The grayscale-gradient tensor method, one of various STIVs, has shown to be effectively reducing the analysis time and is fairly insusceptible to any measurement noise. It, unfortunately, can only be applied to the main flow direction. This means that it can not measure any two-dimensional flow field, e.g. flow in the vicinity of river structures and flow around river bends. The present study aimed to develop a new method of analyzing spatio-temporal images in two-dimension using cross-correlation analysis. Unlike the conventional STIV, the developed method can be used to measure two-dimensional flow substantially. The method also has very high spatial resolution and reduces the analysis time. A verification test using artificial images with lid-driven cavity flow showed that the maximum error of the method is less than 10 % and the average error is less than 5 %. This means that the developed scheme seems to be fairly accurate, even for two-dimensional flow.

A Study on Forecasting Accuracy Improvement of Case Based Reasoning Approach Using Fuzzy Relation (퍼지 관계를 활용한 사례기반추론 예측 정확성 향상에 관한 연구)

  • Lee, In-Ho;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.67-84
    • /
    • 2010
  • In terms of business, forecasting is a work of what is expected to happen in the future to make managerial decisions and plans. Therefore, the accurate forecasting is very important for major managerial decision making and is the basis for making various strategies of business. But it is very difficult to make an unbiased and consistent estimate because of uncertainty and complexity in the future business environment. That is why we should use scientific forecasting model to support business decision making, and make an effort to minimize the model's forecasting error which is difference between observation and estimator. Nevertheless, minimizing the error is not an easy task. Case-based reasoning is a problem solving method that utilizes the past similar case to solve the current problem. To build the successful case-based reasoning models, retrieving the case not only the most similar case but also the most relevant case is very important. To retrieve the similar and relevant case from past cases, the measurement of similarities between cases is an important key factor. Especially, if the cases contain symbolic data, it is more difficult to measure the distances. The purpose of this study is to improve the forecasting accuracy of case-based reasoning approach using fuzzy relation and composition. Especially, two methods are adopted to measure the similarity between cases containing symbolic data. One is to deduct the similarity matrix following binary logic(the judgment of sameness between two symbolic data), the other is to deduct the similarity matrix following fuzzy relation and composition. This study is conducted in the following order; data gathering and preprocessing, model building and analysis, validation analysis, conclusion. First, in the progress of data gathering and preprocessing we collect data set including categorical dependent variables. Also, the data set gathered is cross-section data and independent variables of the data set include several qualitative variables expressed symbolic data. The research data consists of many financial ratios and the corresponding bond ratings of Korean companies. The ratings we employ in this study cover all bonds rated by one of the bond rating agencies in Korea. Our total sample includes 1,816 companies whose commercial papers have been rated in the period 1997~2000. Credit grades are defined as outputs and classified into 5 rating categories(A1, A2, A3, B, C) according to credit levels. Second, in the progress of model building and analysis we deduct the similarity matrix following binary logic and fuzzy composition to measure the similarity between cases containing symbolic data. In this process, the used types of fuzzy composition are max-min, max-product, max-average. And then, the analysis is carried out by case-based reasoning approach with the deducted similarity matrix. Third, in the progress of validation analysis we verify the validation of model through McNemar test based on hit ratio. Finally, we draw a conclusion from the study. As a result, the similarity measuring method using fuzzy relation and composition shows good forecasting performance compared to the similarity measuring method using binary logic for similarity measurement between two symbolic data. But the results of the analysis are not statistically significant in forecasting performance among the types of fuzzy composition. The contributions of this study are as follows. We propose another methodology that fuzzy relation and fuzzy composition could be applied for the similarity measurement between two symbolic data. That is the most important factor to build case-based reasoning model.

Estimation of Rice-Planted Area using Landsat TM Imagery in Dangjin-gun area (Landsat TM 화상을 이용한 당진군 일원의 논면적 추정)

  • 홍석영;임상규;이규성;조인상;김길웅
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.5-15
    • /
    • 2001
  • For estimating paddy field area with Landsat TM images, two dates, May 31, 1991 (transplanting stage) and August 19, 1991 (heading stage) were selected by the data analysis of digital numbers considering rice cropping calendar. Four different estimating methods (1) rule-based classification method, (2) supervised classification(maximum likelihood), (3) unsupervised classification (ISODATA, No. of class:15), (4) unsupervised classification (ISODATA, No. of class:20) were examined. Paddy field area was estimated to 7291.19 ha by non-classification method. In comparison with topographical map (1:25,000), accuracy far paddy field area was 92%. A new image stacked by 10 layers, Landsat TM band 3,4,5, RVI, and wetness in May 31,1991 and August 19,1991 was made to estimate paddy field area by both supervised and unsupervised classification method. Paddy field was classified to 9100.98 ha by supervised classification. Error matrix showed 97.2% overall accuracy far training samples. Accuracy compared with topographical map was 95%. Unsupervised classifications by ISODATA using principal axis. Paddy field area by two different classification number of criteria were 6663.60 ha and 5704.56 ha and accuracy compared with topographical map was 87% and 82%. Irrespective of the estimating methods, paddy fields were discriminated very well by using two-date Landsat TM images in May 31,1991 (transplanting stage) and August 19,1991 (heading stage). Among estimation methods, rule-based classification method was the easiest to analyze and fast to process.

  • PDF

Development of Greenhouse Cooling and Heating Load Calculation Program Based on Mobile (모바일 기반 온실 냉난방 부하 산정 프로그램 개발)

  • Moon, Jong Pil;Bang, Ji Woong;Hwang, Jeongsu;Jang, Jae Kyung;Yun, Sung Wook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.419-428
    • /
    • 2021
  • In order to develope a mobile-based greenhouse energy calculation program, firstly, the overall thermal transmittance of 10 types of major covers and 16 types of insulation materials were measured. In addition, to estimate the overall thermal transmittance when the cover and insulation materials were installed in double or triple layers, 24 combinations of double installations and 59 combinations of triple installations were measured using the hotbox. Also, the overall thermal transmittance value for a single material and the thermal resistance value were used to calculate the overall thermal transmittance value at the time of multi-layer installation of covering and insulating materials, and the linear regression equation was derived to correct the error with the measured values. As a result of developing the model for estimating thermal transmittance when installing multiple layers of coverings and insulating materials based on the value of overall thermal transmittance of a single-material, the model evaluation index was 0.90 (good when it is 0.5 or more), indicating that the estimated value was very close to the actual value. In addition, as a result of the on-site test, it was evaluated that the estimated heat saving rate was smaller than the actual value with a relative error of 2%. Based on these results, a mobile-based greenhouse energy calculation program was developed that was implemented as an HTML5 standard web-based mobile web application and was designed to work with various mobile device and PC browsers with N-Screen support. It had functions to provides the overall thermal transmittance(heating load coefficient) for each combination of greenhouse coverings and thermal insulation materials and to evaluate the energy consumption during a specific period of the target greenhouse. It was estimated that an energy-saving greenhouse design would be possible with the optimal selection of coverings and insulation materials according to the region and shape of the greenhouse.

Analysis of the Effect of Objective Functions on Hydrologic Model Calibration and Simulation (목적함수에 따른 매개변수 추정 및 수문모형 정확도 비교·분석)

  • Lee, Gi Ha;Yeon, Min Ho;Kim, Young Hun;Jung, Sung Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • An automatic optimization technique is used to estimate the optimal parameters of the hydrologic model, and different hydrologic response results can be provided depending on objective functions. In this study, the parameters of the event-based rainfall-runoff model were estimated using various objective functions, the reproducibility of the hydrograph according to the objective functions was evaluated, and appropriate objective functions were proposed. As the rainfall-runoff model, the storage function model(SFM), which is a lumped hydrologic model used for runoff simulation in the current Korean flood forecasting system, was selected. In order to evaluate the reproducibility of the hydrograph for each objective function, 9 rainfall events were selected for the Cheoncheon basin, which is the upstream basin of Yongdam Dam, and widely-used 7 objective functions were selected for parameter estimation of the SFM for each rainfall event. Then, the reproducibility of the simulated hydrograph using the optimal parameter sets based on the different objective functions was analyzed. As a result, RMSE, NSE, and RSR, which include the error square term in the objective function, showed the highest accuracy for all rainfall events except for Event 7. In addition, in the case of PBIAS and VE, which include an error term compared to the observed flow, it also showed relatively stable reproducibility of the hydrograph. However, in the case of MIA, which adjusts parameters sensitive to high flow and low flow simultaneously, the hydrograph reproducibility performance was found to be very low.

Development of Weight Estimation Equations and Weight Tables for Larix kaempferi and Pinus rigida Stand (일본잎갈나무와 리기다소나무의 중량추정식 및 중량표 개발)

  • Jintaek Kang;Chiung Ko;Jeongmuk Park;Jongsu Yim;Sun-Jeong Lee;Myoungsoo Won
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.472-489
    • /
    • 2023
  • This study was conducted to derive the optimal estimation equations for deriving the green and dry weights of Larix kaempferi (Japanese larch) and Pinus rigida (Rigida pine), which are major coniferous tree species in South Korea. The equations were then used to develop weight tables. Table development began with the sampling of 150 L. kaempferi and 90 P. rigida trees distributed throughout the national scale, after which green weights were measured on-site. Samples from each stand were then collected, and their dry weights were measured in a laboratory. The equation used to calculate green and dry weights was divided into a one-variable formula that uses only the diameter at breast height (DBH) and a two-variable equation that employs DBH and height. The equations used to estimate the green and dry weights of logs were divided into one- and two-variable equations using DBH. Statistical data, such as the fitness index (FI), root mean square error, standard error of estimation, and residual diagram, were used to verify the suitability of the estimation equations. Applicability was examined by calculating weights using the derived optimal equations. The equation W = bD+cD2 was used in measurements involving only DBH, whereas the equation W = aDbHc was employed in cases involving both diameter and height at breast height. The FI of W = bD+cD2 was 0.91, while that of W = aDbHc was 0.95, both of which are high values. With these estimation formulas, weight tables for the green and dry weights of L. kaempferi and P. rigida were prepared and compared with weight tables created 20 years ago. The green and dry weight tables of both species were larger.

State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter (이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정)

  • Hong-Ryun Jung;Jun Ho Kim;Seung Woo Kim;Jong Hoon Kim;Eun Jin Kang;Jeong Woo Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Along with the high interest in electric vehicles and new renewable energy, there is a growing demand to apply lithium-ion batteries in the construction equipment industry. The capacity of heavy construction equipment that performs various tasks at construction sites is rapidly decreasing. Therefore, it is essential to accurately predict the state of batteries such as SOC (State of Charge) and SOH (State of Health). In this paper, the errors between actual electrochemical measurement data and estimated data were compared using the Dual Extended Kalman Filter (DEKF) algorithm that can estimate SOC and SOH at the same time. The prediction of battery charge state was analyzed by measuring OCV at SOC 5% intervals under 0.2C-rate conditions after the battery cell was fully charged, and the degradation state of the battery was predicted after 50 cycles of aging tests under various C-rate (0.2, 0.3, 0.5, 1.0, 1.5C rate) conditions. It was confirmed that the SOC and SOH estimation errors using DEKF tended to increase as the C-rate increased. It was confirmed that the SOC estimation using DEKF showed less than 6% at 0.2, 0.5, and 1C-rate. In addition, it was confirmed that the SOH estimation results showed good performance within the maximum error of 1.0% and 1.3% at 0.2 and 0.3C-rate, respectively. Also, it was confirmed that the estimation error also increased from 1.5% to 2% as the C-rate increased from 0.5 to 1.5C-rate. However, this result shows that all SOH estimation results using DEKF were excellent within about 2%.