• Title/Summary/Keyword: error estimate

Search Result 2,291, Processing Time 0.03 seconds

Design and Implementation of Mobile Continuous Blood Pressure Measurement System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 모바일 연속 혈압 측정 시스템의 설계 및 구현)

  • Kim, Seong-Woo;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1469-1476
    • /
    • 2022
  • Recently, many researches have been conducted to estimate blood pressure using ECG(Electrocardiogram) and PPG(Photoplentysmography) signals. In this paper, we designed and implemented a mobile system to monitor blood pressure in real time by using 1-D convolutional neural networks. The proposed model consists of deep 11 layers which can learn to extract various features of ECG and PPG signals. The simulation results show that the more the number of convolutional kernels the learned neural network has, the more detailed characteristics of ECG and PPG signals resulted in better performance with reduced mean square error compared to linear regression model. With receiving measurement signals from wearable ECG and PPG sensor devices attached to the body, the developed system receives measurement data transmitted through Bluetooth communication from the devices, estimates systolic and diastolic blood pressure values using a learned model and displays its graph in real time.

Heating Performance Prediction of Low-depth Modular Ground Heat Exchanger based on Artificial Neural Network Model (인공신경망 모델을 활용한 저심도 모듈러 지중열교환기의 난방성능 예측에 관한 연구)

  • Oh, Jinhwan;Cho, Jeong-Heum;Bae, Sangmu;Chae, Hobyung;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Ground source heat pump (GSHP) system is highly efficient and environment-friendly and supplies heating, cooling and hot water to buildings. For an optimal design of the GSHP system, the ground thermal properties should be determined to estimate the heat exchange rate between ground and borehole heat exchangers (BHE) and the system performance during long-term operating periods. However, the process increases the initial cost and construction period, which causes the system to be hindered in distribution. On the other hand, much research has been applied to the artificial neural network (ANN) to solve problems based on data efficiently and stably. This research proposes the predictive performance model utilizing ANN considering local characteristics and weather data for the predictive performance model. The ANN model predicts the entering water temperature (EWT) from the GHEs to the heat pump for the modular GHEs, which were developed to reduce the cost and spatial disadvantages of the vertical-type GHEs. As a result, the temperature error between the data and predicted results was 3.52%. The proposed approach was validated to predict the system performance and EWT of the GSHP system.

Evaluation of the equation for predicting dry matter intake of lactating dairy cows in the Korean feeding standards for dairy cattle

  • Lee, Mingyung;Lee, Junsung;Jeon, Seoyoung;Park, Seong-Min;Ki, Kwang-Seok;Seo, Seongwon
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1623-1631
    • /
    • 2021
  • Objective: This study aimed to validate and evaluate the dry matter (DM) intake prediction model of the Korean feeding standards for dairy cattle (KFSD). Methods: The KFSD DM intake (DMI) model was developed using a database containing the data from the Journal of Dairy Science from 2006 to 2011 (1,065 observations 287 studies). The development (458 observations from 103 studies) and evaluation databases (168 observations from 74 studies) were constructed from the database. The body weight (kg; BW), metabolic BW (BW0.75, MBW), 4% fat-corrected milk (FCM), forage as a percentage of dietary DM, and the dietary content of nutrients (% DM) were chosen as possible explanatory variables. A random coefficient model with the study as a random variable and a linear model without the random effect was used to select model variables and estimate parameters, respectively, during the model development. The best-fit equation was compared to published equations, and sensitivity analysis of the prediction equation was conducted. The KFSD model was also evaluated using in vivo feeding trial data. Results: The KFSD DMI equation is 4.103 (±2.994)+0.112 (±0.022)×MBW+0.284 (±0.020)×FCM-0.119 (±0.028)×neutral detergent fiber (NDF), explaining 47% of the variation in the evaluation dataset with no mean nor slope bias (p>0.05). The root mean square prediction error was 2.70 kg/d, best among the tested equations. The sensitivity analysis showed that the model is the most sensitive to FCM, followed by MBW and NDF. With the in vivo data, the KFSD equation showed slightly higher precision (R2 = 0.39) than the NRC equation (R2 = 0.37), with a mean bias of 1.19 kg and no slope bias (p>0.05). Conclusion: The KFSD DMI model is suitable for predicting the DMI of lactating dairy cows in practical situations in Korea.

Burning Rate Estimate Method of Solid Propellants at High Pressure Condition (고압에서 작동하는 고체 추진제 연소속도 추정 방법)

  • Choi, Hanyoung;Lee, Dongsun;Sung, Hong-Gye;Lee, Wonmin;Kim, Eunmi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • The burning rate estimation method of solid propellants, based on closed bomb tests, has been introduced. The composition of the combustion gas is determined by using CEA and the Noble-Abel equation of state for high pressure operation conditions. Covolume taking into account the collision among molecules due to the actual volume of the molecule is modeled by LJ potential. A cubic form function is applied to calculate the volume change of propellant grains during combustion. The estimated burning rates of five different grain configuation at high pressure are fairly compared with BRLCB results within the maximum error of 6%.

Measurement Time-Delay Compensation and Initial Attitude Determination of Electro-Optical Tracking System Using Augmented Kalman Filter (Augmented 칼만 필터를 이용한 전자광학 추적 장비의 측정치 시간지연 보상과 초기 자세 결정)

  • Son, Jae Hoon;Choi, Woo Jin;Kim, Sung-Su;Oh, Sang Heon;Lee, Sang Jeong;Hwang, Dong-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1589-1597
    • /
    • 2021
  • Due to the low output rate and time delay of vehicle's navigation results, the electro-optical tracking system(EOTS) cannot estimate accurate target positions. If an inertial measurement unit(IMU) is additionally mounted into the EOTS and inertial navigation system(INS) is constructed, the high navigation output rate can be obtained. And the time-delay can be compensated by using the augmented Kalman filter. An accurate initial attitude is required in order to have accurate navigation outputs. In this paper, an attitude determination algorithm is proposed using the augmented Kalman filter in order to compensate measurement delay of the EOTS and have accurate initial attitude. The proposed initial attitude determination algorithm consists of an augmented Kalman filter, an INS, and an integrated Kalman filter. The augmented Kalman filter compensates the time-delay of the vehicle's navigation results and the integrated Kalman filter estimates the navigation error of the INS. In order to evaluate performance of the proposed algorithm, vehicle's navigation outputs and IMU measurements were generated using sensors' model-based measurement generator and initial attitude estimation errors of the proposed algorithm and the conventional algorithm without the augmented Kalman filter were compared for the generated measurements. The evaluation results show that the proposed algorithm has better accuracy.

Study on 2.5D Map Building and Map Merging Method for Rescue Robot Navigation (재난 구조용 로봇의 자율주행을 위한 지도작성 및 2.5D 지도정합에 관한 연구)

  • Kim, Su Ho;Shim, Jae Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.114-130
    • /
    • 2022
  • The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.

Development of Automatic Peach Grading System using NIR Spectroscopy

  • Lee, Kang-J.;Choi, Kyu H.;Choi, Dong S.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1267-1267
    • /
    • 2001
  • The existing fruit sorter has the method of tilting tray and extracting fruits by the action of solenoid or springs. In peaches, the most sort processing is supported by man because the sorter make fatal damage to peaches. In order to sustain commodity and quality of peach non-destructive, non-contact and real time based sorter was needed. This study was performed to develop peach sorter using near-infrared spectroscopy in real time and nondestructively. The prototype was developed to decrease internal and external damage of peach caused by the sorter, which had a way of extracting tray with it. To decrease positioning error of measuring sugar contents in peaches, fiber optic with two direction diverged was developed and attached to the prototype. The program for sorting and operating the prototype was developed using visual basic 6.0 language to measure several quality index such as chlorophyll, some defect, sugar contents. The all sorting result was saved to return farmers for being index of good quality production. Using the prototype, program and MLR(multiple linear regression) model, it was possible to estimate sugar content of peaches with the determination coefficient of 0.71 and SEC of 0.42bx using 16 wavelengths. The developed MLR model had determination coefficient of 0.69, and SEP of 0.49bx, it was better result than single point measurement of 1999's. The peach sweetness grading system based on NIR reflectance method, which consists of photodiode-array sensor, quartz-halogen lamp and fiber optic diverged two bundles for transmitting the light and detecting the reflected light, was developed and evaluated. It was possible to predict the soluble solid contents of peaches in real time and nondestructively using the system which had the accuracy of 91 percentage and the capacity of 7,200 peaches per an hour for grading 2 classes by sugar contents. Draining is one of important factors for production peaches having good qualities. The reason why one farm's product belows others could be estimated for bad draining, over-much nitrogen fertilizer, soil characteristics, etc. After this, the report saved by the peach grading system will have to be good materials to farmers for production high quality peaches. They could share the result or compare with others and diagnose their cultural practice.

  • PDF

Accurate prediction of lane speeds by using neural network

  • Dong hyun Pyun;Changwoo Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.9-15
    • /
    • 2023
  • In this paper, we propose a method predicting the speed of each lane from the link speed using a neural network. We took three measures for configuring learning data to increase prediction accuracy. The first one is to expand the spatial range of the data source by including 14 links connected to the beginning and end points of the link. We also increased the time interval from 07:00 to 22:00 and included the data generation time in the feature data. Finally, we marked weekdays and holidays. Results of experiments showed that the speed error was reduced by 21.9% from 6.4 km/h to 5.0 km/h for straight lane, by 12.9% from 8.5 km/h to 7.4 km/h for right turns, and by 5.7% from 8.7 km/h to 8.2 km/h for left-turns. As a secondary result, we confirmed that the prediction accuracy of each lane was high for city roads when the traffic flow was congested. The feature of the proposed method is that it predicts traffic conditions for each lane improving the accuracy of prediction.

Application into Assessment of Liquefaction Hazard and Geotechnical Vulnerability During Earthquake with High-Precision Spatial-Ground Model for a City Development Area (도시개발 영역 고정밀 공간지반모델의 지진 시 액상화 재해 및 지반 취약성 평가 활용)

  • Kim, Han-Saem;Sun, Chang-Guk;Ha, Ik-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.221-230
    • /
    • 2023
  • This study proposes a methodology for assessing seismic liquefaction hazard by implementing high-resolution three-dimensional (3D) ground models with high-density/high-precision site investigation data acquired in an area of interest, which would be linked to geotechnical numerical analysis tools. It is possible to estimate the vulnerability of earthquake-induced geotechnical phenomena (ground motion amplification, liquefaction, landslide, etc.) and their triggering complex disasters across an area for urban development with several stages of high-density datasets. In this study, the spatial-ground models for city development were built with a 3D high-precision grid of 5 m × 5 m × 1 m by applying geostatistic methods. Finally, after comparing each prediction error, the geotechnical model from the Gaussian sequential simulation is selected to assess earthquake-induced geotechnical hazards. In particular, with seven independent input earthquake motions, liquefaction analysis with finite element analyses and hazard mappings with LPI and LSN are performed reliably based on the spatial geotechnical models in the study area. Furthermore, various phenomena and parameters, including settlement in the city planning area, are assessed in terms of geotechnical vulnerability also based on the high-resolution spatial-ground modeling. This case study on the high-precision 3D ground model-based zonations in the area of interest verifies the usefulness in assessing spatially earthquake-induced hazards and geotechnical vulnerability and their decision-making support.

Development of a Dynamic Downscaling Method for Use in Short-Range Atmospheric Dispersion Modeling Near Nuclear Power Plants

  • Sang-Hyun Lee;Su-Bin Oh;Chun-Ji Kim;Chun-Sil Jin;Hyun-Ha Lee
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.28-43
    • /
    • 2023
  • Background: High-fidelity meteorological data is a prerequisite for the realistic simulation of atmospheric dispersion of radioactive materials near nuclear power plants (NPPs). However, many meteorological models frequently overestimate near-surface wind speeds, failing to represent local meteorological conditions near NPPs. This study presents a new high-resolution (approximately 1 km) meteorological downscaling method for modeling short-range (< 100 km) atmospheric dispersion of accidental NPP plumes. Materials and Methods: Six considerations from literature reviews have been suggested for a new dynamic downscaling method. The dynamic downscaling method is developed based on the Weather Research and Forecasting (WRF) model version 3.6.1, applying high-resolution land-use and topography data. In addition, a new subgrid-scale topographic drag parameterization has been implemented for a realistic representation of the atmospheric surface-layer momentum transfer. Finally, a year-long simulation for the Kori and Wolsong NPPs, located in southeastern coastal areas, has been made for 2016 and evaluated against operational surface meteorological measurements and the NPPs' on-site weather stations. Results and Discussion: The new dynamic downscaling method can represent multiscale atmospheric motions from the synoptic to the boundary-layer scales and produce three-dimensional local meteorological fields near the NPPs with a 1.2 km grid resolution. Comparing the year-long simulation against the measurements showed a salient improvement in simulating near-surface wind fields by reducing the root mean square error of approximately 1 m/s. Furthermore, the improved wind field simulation led to a better agreement in the Eulerian estimate of the local atmospheric dispersion. The new subgrid-scale topographic drag parameterization was essential for improved performance, suggesting the importance of the subgrid-scale momentum interactions in the atmospheric surface layer. Conclusion: A new dynamic downscaling method has been developed to produce high-resolution local meteorological fields around the Kori and Wolsong NPPs, which can be used in short-range atmospheric dispersion modeling near the NPPs.