• Title/Summary/Keyword: error control

Search Result 6,592, Processing Time 0.035 seconds

A study on the actuator arrays of a deformable mirror for adaptive optics (적응광학계 변형거울의 구동기 배열에 따른 성능 변화 연구)

  • 엄태경;이완술;윤성기;이준호
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.442-448
    • /
    • 2002
  • In the earth telescope for space observation, the adaptive optical (AO) system that immediately compensates atmospheric turbulence is helpful to get high-resolution images. An adaptive optics for earth telescopes is very attractive, since the Earth telescopes can be made at lower costs and have larger optical apertures than space telescopes. Generally. in order to remove the wavefront error produced by atmospheric turbulence, a deformable mirror, whose surface shape changes in a controllable way in response to a drive signal, is used. The characteristics and patterns of actuators are very important for the effective control of a deformable mirror. The mirror surface shape deformed by one actuator is defined as an influence function and the deformable mirror can be effectively modeled and designed using this influence function. In this paper. by simplifying the actual influence function obtained by FEM analyses into the Gaussian function and introducing the coupling coefficient between actuators, the influence function is constructed. The proper coupling coefficient of the target system can be obtained by performance analyses of a deformable mirror for various coupling coefficients. Using the constructed influence function, the deformable mirror with equally spaced triangular and square actuator patterns is analyzed for various spacings and an effective actuator pattern is proposed.

Development of artificial intelligence-based river flood level prediction model capable of independent self-warning (독립적 자체경보가 가능한 인공지능기반 하천홍수위예측 모형개발)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1285-1294
    • /
    • 2021
  • In recent years, as rainfall is concentrated and rainfall intensity increases worldwide due to climate change, the scale of flood damage is increasing. Rainfall of a previously unobserved magnitude falls, and the rainy season lasts for a long time on record. In particular, these damages are concentrated in ASEAN countries, and at least 20 million people among ASEAN countries are affected by frequent flooding due to recent sea level rise, typhoons and torrential rain. Korea supports the domestic flood warning system to ASEAN countries through various ODA projects, but the communication network is unstable, so there is a limit to the central control method alone. Therefore, in this study, an artificial intelligence-based flood prediction model was developed to develop an observation station that can observe water level and rainfall, and even predict and warn floods at once at one observation station. Training, validation and testing were carried out for 0.5, 1, 2, 3, and 6 hours of lead time using the rainfall and water level observation data in 10-minute units from 2009 to 2020 at Junjukbi-bridge station of Seolma stream. LSTM was applied to artificial intelligence algorithm. As a result of the study, it showed excellent results in model fit and error for all lead time. In the case of a short arrival time due to a small watershed and a large watershed slope such as Seolma stream, a lead time of 1 hour will show very good prediction results. In addition, it is expected that a longer lead time is possible depending on the size and slope of the watershed.

The Limitations of Holocaust Narratives and the Possibility of Healing Narratives Suggested by Smith's Fires in the Mirror ('홀로코스트' 서사의 한계와 스미스의 『거울 속에 반영된 분노』에 제시된 치유 서사의 가능성)

  • Jung, Sun-kug
    • Cross-Cultural Studies
    • /
    • v.43
    • /
    • pp.377-404
    • /
    • 2016
  • In this paper, I intend to focus on the 1991 racial tension and violence portrayed in Anna Devear Smith's book Fires in the Mirror, which was published in book form in 1993. I make use of a series of interviews with many of those involved in the conflicts, which were based on the Jewish Holocaust and the history of African American enslavement. In Crown Heights, the black community and the Jewish community have each suffered terrible losses, but individuals and communities become rhetorically attached to foundational historical traumas that lie at the center of each group's cultural identity rather than try to understand each other's pain. Smith lets this rhetoric dominate Fires in the Mirror by putting contradictory monologues side by side in order to show how discourses on 'slavery' and 'the Holocaust' still have control over specific ethnic communities. My intention is not to delve into the conflict between the Jewish and black communities exclusively. Rather, I attempt to form an understanding of the problems of the critical/theoretical tenets proposed by 'the rhetoric of holocaust,' including the Jewish Holocaust and the black experience of enslavement. Such an understanding will help us see the failure in the theories, illuminating the ways that such rhetoric should have recognized its own violence and helped to forge a new relationship between racism and anti-Semitism. Fires in the Mirror mirrors back to us the ways that 'the Holocaust' betrays the possibility of error to indicate its own susceptibility to blindness. The cracks brought forth by conflicting narratives enable readers to observe wounds being healed and the possibility of new narrative looming up.

Analysis of Rainfall-Runoff Characteristics in Gokgyochun Basin Using a Runoff Model (유출모형을 이용한 곡교천 유역의 강우-유출 특성 분석)

  • Hwan, Byungl-Ki;Cho, Yong-Soo;Yang, Seung-Bin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.404-411
    • /
    • 2019
  • In this study, the HEC-HMS was applied to determine rainfall-runoff processes for the Gokgyuchun basin. Several sub-basins have large-scale reservoirs for agricultural needs and they store large amounts of initial runoff. Three infiltration methods were implemented to reflect the effect of initial loss by reservoirs: 'SCS-CN'(Scheme I), 'SCS-CN' with simple surface method(Scheme II), and 'Initial and Constant rate'(Scheme III). Modeling processes include incorporating three different methods for loss due to infiltration, Clark's UH model for transformation, exponential recession model for baseflow, and Muskingum model for channel routing. The parameters were calibrated using an optimization technique with trial and error method. Performance measures, such as NSE, RAR, and PBIAS, were adopted to aid in the calibration processes. The model performance for those methods was evaluated at Gangcheong station, which is the outlet of study site. Good accuracy in predicting runoff volume and peak flow, and peak time was obtained using the Scheme II and III, considering the initial loss, whereas Scheme I showed low reliability for storms. Scheme III did not show good matches between observed and simulated values for storms with multi peaks. Conclusively, Scheme II provided better results for both single and multi-peak storms. The results of this study can provide a useful tool for decision makers to determine master plans for regional flood control management.

Estimation of stream flow discharge using the satellite synthetic aperture radar images at the mid to small size streams (합성개구레이더 인공위성 영상을 활용한 중소규모 하천에서의 유량 추정)

  • Seo, Minji;Kim, Dongkyun;Ahmad, Waqas;Cha, Jun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1181-1194
    • /
    • 2018
  • This study suggests a novel approach of estimating stream flow discharge using the Synthetic Aperture Radar (SAR) images taken from 2015 to 2017 by European Space Agency Sentinel-1 satellite. Fifteen small to medium sized rivers in the Han River basin were selected as study area, and the SAR satellite images and flow data from water level and flow observation system operated by the Korea Institute of Hydrological Survey were used for model construction. First, we apply the histogram matching technique to 12 SAR images that have undergone various preprocessing processes for error correction to make the brightness distribution of the images the same. Then, the flow estimation model was constructed by deriving the relationship between the area of the stream water body extracted using the threshold classification method and the in-situ flow data. As a result, we could construct a power function type flow estimation model at the fourteen study areas except for one station. The minimum, the mean, and the maximum coefficient of determination ($R^2$) of the models of at fourteen study areas were 0.30, 0.80, and 0.99, respectively.

Measurement of Bubble Size in Flotation Column using Image Analysis System (이미지 분석시스템을 이용한 부선컬럼에서 기포크기의 측정)

  • An, Ki-Seon;Jeon, Ho-Seok;Park, Chul-Hyun
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.104-113
    • /
    • 2020
  • Bubble size in froth flotation has long been recognized as a key factor which affects the bubble residence time, the bubble surface area flux (Sb) and the carrying rate (Cr). This paper presents method of bubble size measurement, relationship between operating variables and gas dispersion properties in flotation column. Using high speed camera and image analysis system, bubble size has been directly measured as a function of operating parameters (e.g., superficial gas rate (Jg), superficial wash water rate (Jw), frother concentration) in flotation column. Relationship compared to measured and estimated bubble size was obtained within error ranges of ±15~20% and mean bubble size was 0.718mm. From this system the empirical relationship to control the bubble size and distribution has been developed under operating conditions such as Jg of 0.65~1.3cm/s, Jw of 0.13~0.52cm/s and frother concentration of 60~200ppm. Surface tension and bubble size decreased as frother concentration increased. It seemed that critical coalescence concentration (CCC) of bubbles was 200ppm so that surface tension was the lowest (49.24mN/m) at frother concentration of 200ppm. Bubble size tend to increase when superficial gas rate (Jg) decreases and superficial wash water rate Jw and frother concentration increase. Gas holdup is proportional to superficial gas rate as well as frother concentration and superficial wash water rate (at the fixed superficial gas rate).

Improvement of LMS Algorithm Convergence Speed with Updating Adaptive Weight in Data-Recycling Scheme (데이터-재순환 구조에서 적응 가중치 갱신을 통한 LMS 알고리즘 수렴 속 도 개선)

  • Kim, Gwang-Jun;Jang, Hyok;Suk, Kyung-Hyu;Na, Sang-Dong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.4
    • /
    • pp.11-22
    • /
    • 1999
  • Least-mean-square(LMS) adaptive filters have proven to be extremely useful in a number of signal processing tasks. However LMS adaptive filter suffer from a slow rate of convergence for a given steady-state mean square error as compared to the behavior of recursive least squares adaptive filter. In this paper an efficient signal interference control technique is introduced to improve the convergence speed of LMS algorithm with tap weighted vectors updating which were controled by reusing data which was abandoned data in the Adaptive transversal filter in the scheme with data recycling buffers. The computer simulation show that the character of convergence and the value of MSE of proposed algorithm are faster and lower than the existing LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having the same condition of LMS algorithm.

Particle Swarm Optimization-Based Peak Shaving Scheme Using ESS for Reducing Electricity Tariff (전기요금 절감용 ESS를 활용한 Particle Swarm Optimization 기반 Peak Shaving 제어 방법)

  • Park, Myoung Woo;Kang, Moses;Yun, YongWoon;Hong, Seonri;BAE, KUK YEOL;Baek, Jongbok
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.388-398
    • /
    • 2021
  • This paper proposes a particle swarm optimization (PSO)-based peak shaving scheme using energy storage system (ESS) for electricity tariff reduction. The proposed scheme compares the actual load with the estimated load consumption, calculates the additional output power that the ESS needs to discharge additionally to reduce peak load, and adds the input. In addition, in order to compensate for the additional power, the process of allocating power to the determined point is performed, and an optimization that minimizes the average of the load expected at the active power allocations using PSO so that the allocated value does not affect the peak load. To investigated the performance of the proposed scheme, case study of small and large load prediction errors was conducted by reflecting actual load data and load prediction algorithm. As a result, when the proposed scheme is performed with the ESS charge and discharge control to reduce electricity tariff, even when the load prediction error is large, the peak load is successfully reduced, and the peak load reduction effect of 17.8% and electricity tariff reduction effect of 6.02% is shown.

Effectiveness Evaluation of Displacement Accommodatable Pressure Measuring Jig for Quality Assessment of Pressure Application Device (압력 인가 장치의 품질관리를 위한 변위 수용이 가능한 압력 측정용 지그의 유효성 평가)

  • Mun, Chang-Su;Jun, Sung-Chul;Noh, Si-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • Recently, a variety of electric anesthetics devices have been developed and used in clinical practice to reduce the fatigue of the operator during local anesthesia for dental procedures and to compensate for the disadvantages of manual anesthesia device. In this electric anesthesia injection device, the accurate and constant delivery of pressure for drug infusion is a very important performance factor. In order to evaluate the accuracy of the transfer pressure, a small pressure gauge using a load cell is often used, but since the elastic body inside the load cell may not be able to accommodate a sufficient displacement, an error may occur when evaluating pressure performance. For these reasons, in this study, we proposed and evaluated a silicon-chrome steel (Si-Cr steel) spring jig that can accommodate relatively large displacements that can be used when evaluating the performance of a pressure-controlled pressure application device using a load cell type pressure gauge. As a result of the pressure transmissibility test and repeated measurement results using a commercial dental anesthesia injection device, a more stable result was obtained when using a spring jig, and it was confirmed that the frequency of abnormally high measurement was reduced.

Evaluation of hydrological applicability for rainfall estimation algorithms of dual-polarization radar (이중편파 레이더의 강우 추정 알고리즘별 수문학적 적용성 평가)

  • Lee, Myungjin;Lee, Choongke;Yoo, Younghoon;Kwak, Jaewon;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.27-38
    • /
    • 2021
  • Recently, many studies have been conducted to use the radar rainfall in hydrology. However, in the case of weather radar, the beam is blocked due to the limitation of the observation such as mountain effect, which causes underestimation of the radar rainfall. In this study, the radar rainfall was estimated using the Hybrid Sacn Reflectivity (HSR) technique for hydrological use of weather radar and the runoff analysis was performed using the GRM model which is a distributed rainfall-runoff model. As a result of performing the radar rainfall correction and runoff simulation for 5 rainfall events, the accuracy of the dual-polarization radar rainfall using the HSR technique (Q_H_KDP) was the highest with an error within 15% of the ground rainfall. In addition, the result of runoff simulation using Q_H_KDP also showed an accuracy of R2 of 0.9 or more, NRMSE of 1.5 or less and NSE of 0.5 or more. From this study, we examined the application of the dual-polarization radar and this results can be useful for studies related to the hydrological application of dual-polarization radar rainfall in the future.