• Title/Summary/Keyword: error concealment (EC)

Search Result 15, Processing Time 0.026 seconds

Error Concealment Using Inter-layer Correlation for Scalable Video Coding

  • Park, Chun-Su;Wang, Tae-Shick;Ko, Sung-Jea
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.390-392
    • /
    • 2007
  • In this paper, we propose a new error concealment (EC) method using inter-layer correlation for scalable video coding. In the proposed method, the auxiliary motion vector (MV) and the auxiliary mode number (MN) of intra prediction are interleaved into the bitstream to recover the corrupted frame. In order to reduce the bit rate, the proposed method encodes the difference between the original and the predicted values of the MV and MN instead of the original values. Experimental results show that the proposed EC outperforms the conventional EC by 2.8 dB to 6.7 dB.

  • PDF

Hybrid Error Concealment Algorithm for Intra-Frame in H.264 (H.264의 인트라 프레임을 위한 하이브리드 에러 은닉 알고리즘)

  • Yim Chang-Hoon;Kim Won-Jung;Lim Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8C
    • /
    • pp.777-785
    • /
    • 2006
  • H.264 is the prominent video coding standard in various applications such as real-time video streaming and digital multimedia broadcasting, since it provides enhanced compression performance, error resilience tools, and network adaptation. Since compressed video stream is vulnerable to packet loss, error resilience and error concealment(EC) tools are essential for the transmission of video over the Internet. In this paper, we first propose a simple temporal EC method that improves the EC performance for intra-frame in H.264 when the amount of motion is relatively small. Then we propose a new hybrid EC method for intra-frame in H.264, which combines the spatial EC and temporal EC adaptively. The simulations are performed in packet-lossy environments, and the proposed hybrid EC method shows about 0.5-4dB PSNR improvement compared to the conventional spatial EC method that is used for intra-frame in H.264.

Video Error Concealment using Neighboring Motion Vectors (주변의 움직임 벡터를 사용한 비디오 에러 은닉 기법)

  • 임유두;이병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.257-263
    • /
    • 2003
  • Error control and concealment in video communication is becoming increasingly important because transmission errors can cause single or multiple loss of macroblocks in video delivery over unreliable channels such as wireless networks and the internet. This paper describes a temporal error concealment by postprocessing. Lost image blocks are overlapped block motion compensated (OBMC) using median of motion vectors from adjacent blocks at the decoder. The results show a significant improvement over zero motion error concealment and other temporal concealment methods such as Motion Vector Rational Interpolation or Side Match Criterion OBMC by 1.4 to 3.5㏈ gain in PSNR. We present experimental results showing improvements in PSNR and computational complexity.

Whole Frame Error Concealment with an Adaptive PU-based Motion Vector Extrapolation and Boundary Matching (적응적인 PU 기반 움직임 벡터 외삽과 경계 정합을 통한 프레임 전체 오류 은닉 방법에 관한 연구)

  • Kim, Seounghwi;Lee, Dongkyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.533-544
    • /
    • 2015
  • Recently, most of the video services are usually transmitted in wireless networks. In networks environment, a packet of video is likely to be lost during transmission. For this reason, this paper proposes a new Error Concealment (EC) algorithm. For High Efficiency Video Coding (HEVC) bitstreams, the proposed algorithm includes Adaptive Prediction Unit-based Motion Vector Extrapolation (APMVE) and Boundary Matching (BM) algorithm, which employs both the temporal and spatial correlation. APMVE adaptively decides a Error Concealment Basic Unit (ECBU) by using the PU information of the previous frame and BM employing the spatial correlation is applied to only unreliable blocks. Simulation results show that the proposed algorithm provides the higher subjective quality by reducing blocking artifacts which appear in other existing algorithms.

Whole Frame Error Concealment with an Adaptive PU-based Motion Vector Extrapolation for HEVC

  • Kim, Seounghwi;Lee, Dongkyu;Oh, Seoung-Jun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • Most video services are transmitted in wireless networks. In a network environment, a packet of video is likely to be lost during transmission. For this reason, numerous error concealment (EC) algorithms have been proposed to combat channel errors. On the other hand, most existing algorithms cannot conceal the whole missing frame effectively. To resolve this problem, this paper proposes a new Adaptive Prediction Unit-based Motion Vector Extrapolation (APMVE) algorithm to restore the entire missing frame encoded by High Efficiency Video Coding (HEVC). In each missing HEVC frame, it uses the prediction unit (PU) information of the previous frame to adaptively decide the size of a basic unit for error concealment and to provide a more accurate estimation for the motion vector in that basic unit than can be achieved by any other conventional method. The simulation results showed that it is highly effective and significantly outperforms other existing frame recovery methods in terms of both objective and subjective quality.

Temporal Error Concealment Using Boundary Region Feature and Adaptive Block Matching (경계 영역 특성과 적응적 블록 정합을 이용한 시간적 오류 은닉)

  • Bae, Tae-Wuk;Kim, Seung-Jin;Kim, Tae-Su;Lee, Kun-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we proposed an temporal error concealment (EC) using the proposed boundary matching method and the adaptive block matching method. The proposed boundary matching method improves the spatial correlation of the macroblocks (MBs) by reusing the pixels of the concealed MB to estimate a motion vector of a error MB. The adaptive block matching method inspects the horizontal edge and the vertical edge feature of a error MB surroundings, and it conceals the error MBs in reference to more stronger edge feature. This improves video quality by raising edge connection feature of the error MBs and the neighborhood MBs. In particular, we restore a lost MB as the unit of 8${\times}$16 block or 16${\times}$8 block by using edge feature from the surrounding macroblocks. Experimental results show that the proposed algorithm gives better results than the conventional algorithms from a subjective and an objective viewpoint.

  • PDF

PU-based Motion Vector Extrapolation for HEVC Error Concealment (HEVC 오류 은닉을 위한 PU 기반 움직임 벡터 외삽법)

  • Kim, Sangmin;Lee, Dong-Kyu;Park, Dongmin;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.209-210
    • /
    • 2014
  • 최근 인터넷 상에서 제공되는 영상 서비스에 대한 요구가 증가하고 있다. 하지만 네트워크 환경에서 전송되는 데이터는 오류로 인하여 쉽게 손실될 수 있다. 특히 HEVC(High Efficiency Video Coding)와 같이 높은 압축률로 압축된 정보에 대한 전송 오류는 영상 복원에 심각한 영향을 끼친다. 따라서 네트워크 환경에서 일정한 화질을 유지하기 위한 오류 은닉(Error Concealment : EC) 방법이 필요하다. 본 논문은 HEVC EC 를 위한 PU(Prediction Unit) 기반 움직임 벡터 외삽법(Motion Vector Extrapolation : MVE) 모델을 제안한다. PU 는 예측의 기본 단위로써 PU 내에 동일한 물체가 포함될 확률이 높다. 따라서, 이 모델은 손실된 프레임의 이전 프레임이 갖는 PU 정보를 이용하여 PU 단위로 외삽(extrapolation)을 실시한다. 또한, 손실된 블록과 외삽 블록간의 관계를 고려하여 겹쳐진(overlapped) 외삽 블록 중 가장 작은 PU 크기를 EC 기본 단위로 결정한다. 이 방법은 PU 정보를 반영함으로써 블록 경계 오류(block artifact)를 감소시킨다.

  • PDF

Spatial Error Concealment Technique for Losslessly Compressed Images Using Data Hiding in Error-Prone Channels

  • Kim, Kyung-Su;Lee, Hae-Yeoun;Lee, Heung-Kyu
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.168-173
    • /
    • 2010
  • Error concealment techniques are significant due to the growing interest in imagery transmission over error-prone channels. This paper presents a spatial error concealment technique for losslessly compressed images using least significant bit (LSB)-based data hiding to reconstruct a close approximation after the loss of image blocks during image transmission. Before transmission, block description information (BDI) is generated by applying quantization following discrete wavelet transform. This is then embedded into the LSB plane of the original image itself at the encoder. At the decoder, this BDI is used to conceal blocks that may have been dropped during the transmission. Although the original image is modified slightly by the message embedding process, no perceptible artifacts are introduced and the visual quality is sufficient for analysis and diagnosis. In comparisons with previous methods at various loss rates, the proposed technique is shown to be promising due to its good performance in the case of a loss of isolated and continuous blocks.

Disparity-based Error Concealment for Stereoscopic Images with Superpixel Segmentation

  • Zhang, Yizhang;Tang, Guijin;Liu, Xiaohua;Sun, Changming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4375-4388
    • /
    • 2018
  • To solve the problem of transmission errors in stereoscopic images, this paper proposes a novel error concealment (EC) method using superpixel segmentation and adaptive disparity selection (SSADS). Our algorithm consists of two steps. The first step is disparity estimation for each pixel in a reference image. In this step, the numbers of superpixel segmentation labels of stereoscopic images are used as a new constraint for disparity matching to reduce the effect of mismatching. The second step is disparity selection for a lost block. In this step, a strategy based on boundary smoothness is proposed to adaptively select the optimal disparity which is used for error concealment. Experimental results demonstrate that compared with other methods, the proposed method has significant advantages in both objective and subjective quality assessment.

Error Concealment Based on Multiple Representation for Wireless Transmission of JPEG2000 Image

  • Ou, Yang;Lee, Won-Young;Yang, Tae-Uk;Chee, Sung-Taek;Rhee, Kyung-Hyune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.68-78
    • /
    • 2008
  • The transmission of multimedia information over error-prone channels such as wireless networks has become an important area of research. In this paper, we propose two Error Concealment(EC) schemes for wireless transmission of JPEG2000 image. The Multiple Representation(MR) is employed as the preprocessing in our schemes, whereas the main error concealing operation is applied in wavelet domain at receiver side. The compressed code-stream of several subsampled versions of original image is transmitted over a single channel with random bit errors. In the decoder side, the correctly reconstructed wavelet coefficients are utilized to recover the corrupted coefficients in other sub-images. The recovery is carried out by proposed basic(MREC-BS) or enhanced(MREC-ES) methods, both of which can be simply implemented. Moreover, there is no iterative processing during error concealing, which results a big time saving. Also, the simulation results confirm the effectiveness and efficiency of our proposed schemes.