• Title/Summary/Keyword: error concealment

Search Result 156, Processing Time 0.027 seconds

Adaptive Error Concealment Method Using Affine Transform in the Video Decoder (비디오 복호기에서의 어파인 변환을 이용한 적응적 에러은닉 기법)

  • Kim, Dong-Hyung;Kim, Seung-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.712-719
    • /
    • 2008
  • Temporal error concealment indicates the algorithm that restores the lost video data using temporal correlation between previous frame and current frame with lost data. It can be categorized into the methods of block-based and pixel-based concealment. The proposed method in this paper is for pixel-based temporal error concealment using affine transform. It outperforms especially when the object or background in lost block has geometric transform which can be modeled using affine transform, that is, rotation, magnification, reduction, etc. Furthermore, in order to maintain good performance even though one or more motion vector represents the motion of different objects, we defines a cost function. According to cost from the cost function, the proposed method adopts affine error concealment adaptively. Simulation results show that the proposed method yields better performance up to 1.9 dB than the method embedded in reference software of H.264/AVC.

The Error concealment using Scalability in H.236v2 (H.263v2에서 계층부호화를 이용한 오류 은닉)

  • 한승균;장승기;서덕영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.1063-1075
    • /
    • 2000
  • This paper proposes an adaptive error concealment technique for compressed video. Since redundancy is extracted out during compression process, compressed video is vulnerable to errors which occur during transmission of video over error prone networks such as wireless channels and Internet. Error concealment is a process of reconstructing video out of damaged video bit stream. We proved that scalable encoding is very useful for error concealment. Analysis of experiments shows that some part of image is better concealed by using base layer information and other part of image is better concealed by using previous frame information. We developed a technique which enables to decide which methodology is more effective, adaptively, based on motion vectors and regional spatial activity. We used H.263v2 for scalable encoding, but, our approach could be applied to all DCT based video codec.

  • PDF

Boundary Match and Block Reliability Based Error Concealment Algorithm (블록 신뢰도와 경계면 매칭 기반의 잡음 은닉 알고리즘)

  • Kim, Do Hyun;Choi, Kyoung Ho
    • Smart Media Journal
    • /
    • v.6 no.2
    • /
    • pp.9-14
    • /
    • 2017
  • A packet loss in wireless environments causes a severe degradation of video quality in video communications. In this paper, a novel video error concealment algorithm is presented by combining boundary errors and a block reliability measure. The block reliability measure decides the reliability of a block by checking residual errors of a block. In the proposed approach, a motion vector of a missing unreliable block in an inter coded frame is obtained initially based on the motion vector of the same block in the reference frame. Furthermore, if the block in the reference frame is unreliable according to the reliability measure, a new motion vector is decided based on block boundary errors around the initial motion vector. According to our simulations, the proposed approach shows promising results for error concealment in error-prone wireless environments.

Error Concealment Method Based on POCS for Multi-layered Video Coding (다계층 비디오 코딩에 적용 가능한 POCS 기반 에러 은닉 기법)

  • Yun, Byoung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.67-75
    • /
    • 2009
  • Multi-layered video coding that provides scalability across the visual content has emerged for easily adaptive service over current heterogeneous network. However, the network is still error prone environment so that video service may suffer packet loss or erroneous decoding of the video. Especially distortion caused by the burst error may propagate to several pictures until intra refreshing, which will raise a terrific degradation of picture quality. To overcome the problem at terminal independently, we propose a new error concealment algorithm for the multi-layered video coding. The proposed method uses the similarity of between layers in the multi-layered video coding and POCS (Projections Onto Convex Sets) which is a powerful error concealment tool, but heavily dependent on initial values. To find adequate initial value which can reduce iteration times as well as achieve high performance, we took consideration into both features of layered approach coding and the correlation in neighbor blocks. The simulation results show that the proposed concealment method works well.

Motion-Vector Refinement for Video Error Concealment Using Downhill Simplex Approach

  • Kim, Do-Hyun;Kwon, Young-Jin;Choi, Kyoung-Ho
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.266-274
    • /
    • 2018
  • In error-prone wireless environments, it is difficult to realize video coding systems that are robust to various types of data loss. In this paper, a novel motion-vector refinement approach is presented for video error concealment. A traditional boundary-matching approach is exploited to reduce blocky effects along the block boundary. More specifically, a downhill simplex approach is combined with a boundary-matching approach to fine-tune the motion vectors, reducing the blocky effects along the prediction unit block boundary, and minimizing the computational cost. Extensive simulations are performed, and the results obtained verify the robustness and effectiveness of the proposed approach.

Error Concealment Using a Digital Watermarking Technique for Interframe Video Coding

  • Munadi, Khairul;Kurosaki, Masayuki;Kiya, Hitoshi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.599-602
    • /
    • 2002
  • A new approach of error concealment using a digital watermarking technique for interframe video coding is presented in this paper. In the proposed method, the most important feature of the reference frame is extracted. Then, this feature is embedded into the prediction error of current frame prior to transmission. Error concealment is achieved by means of recovering the erroneous reference frame using the embedded data before the reconstruction of current frame is performed. Simulation results demonstrated the effectiveness of the proposed method.

  • PDF

TEMPORAL ERROR CONCEALMENT ALGORITHM BASED ON ADAPTIVE SEACH RANGE AND MULTI-SIDE BOUNDARY INFORMATION FOR H.264/AVC

  • Kim, Myoung-Hoon;Jung, Soon-Hong;Kang, Beum-Joo;Sull, Sang-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.273-277
    • /
    • 2009
  • A compressed video stream is very sensitive to transmission errors that may severely degrade the reconstructed image. Therefore, error resilience is an essential problem in video communications. In this paper, we propose novel temporal error concealment techniques for recovering lost or erroneously received macroblock (MB). To reduce the computational complexity, the proposed method adaptively determines the search range for each lost MB to find best matched block in the previous frame. And the original corrupted MB split into for $8{\times}8$ sub-MBs, and estimates motion vector (MV) of each sub-MB using its boundary information. Then the estimated MVs are utilized to reconstruct the damaged MB. In simulation results, the proposed method shows better performance than conventional methods in both aspects of PSNR.

  • PDF

A Study of Temporal Error Concealment in Low Bandwidth Network (저대역폭 통신망에서의 시간적 에러 은닉에 관한 연구)

  • Park, Sung-Chan;Lee, Gwi-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.612-622
    • /
    • 2002
  • In this paper, we review temporal error concealment for video transport over unreliable networks, and a new approach for the recovery of lost or erroneous motion vection(MV)s by classifying the movements of neighboring blocks by their homogeneity is proposed. MVs of the neighboring blocks are classified according to the direction of MVs and a representative value for each class is determined to obtain the candidate MV set. By computing the distortion of the candidates, a MV with the minimum distortion is selected. Experimental results show that the proposed algorithm exhibits better performance in many cases than existing methods.

Spatio-Temporal Error Concealment of I-frame using GOP structure of MPEG-2 (MPEG-2의 GOP 구조를 이용한 I 프레임의 시공간적 오류 은닉)

  • Kang, Min-Jung;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.72-82
    • /
    • 2004
  • This paper proposes more robust error concealment techniques (ECTs) for MPEG-2 intra coded frame. MPEG-2 source coding algorithm is very sensitive to transmission errors due to the use of variable-length coding. The transmission errors are corrected by error correction scheme, however, they cannot be revised properly. Error concealment (EC) is used to conceal the errors which are not corrected by error correction and to provide minimum visual distortion at the decoder. If errors are generated in intra coded frame, that is the starting frame of GOP, they are propagated to other inter coded frames due to the nature of motion compensated prediction coding. Such propagation of error may cause severe visual distortion. The proposed algorithm in this paper utilizes the spatio-temporal information of neighboring inter coded frames to conceal the successive slices errors occurred in I-frame. The proposed method also overcomes the problems that previous ECTs reside. The proposed algorithm generates consistent performance even in network where the violent transmission errors frequently occur. Algorithm is performed in MPEG-2 video codec and we can confirm that the proposed algorithm provides less visible distortion and higher PSNR than other approaches through simulations.

Error Concealment Based on Multiple Representation for Wireless Transmission of JPEG2000 Image

  • Ou, Yang;Lee, Won-Young;Yang, Tae-Uk;Chee, Sung-Taek;Rhee, Kyung-Hyune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.68-78
    • /
    • 2008
  • The transmission of multimedia information over error-prone channels such as wireless networks has become an important area of research. In this paper, we propose two Error Concealment(EC) schemes for wireless transmission of JPEG2000 image. The Multiple Representation(MR) is employed as the preprocessing in our schemes, whereas the main error concealing operation is applied in wavelet domain at receiver side. The compressed code-stream of several subsampled versions of original image is transmitted over a single channel with random bit errors. In the decoder side, the correctly reconstructed wavelet coefficients are utilized to recover the corrupted coefficients in other sub-images. The recovery is carried out by proposed basic(MREC-BS) or enhanced(MREC-ES) methods, both of which can be simply implemented. Moreover, there is no iterative processing during error concealing, which results a big time saving. Also, the simulation results confirm the effectiveness and efficiency of our proposed schemes.