• Title/Summary/Keyword: erosion depth

Search Result 270, Processing Time 0.035 seconds

Case Study for Efficiency of Counter-Debrisflow Structures in Baekyang Mt. (토석류 방재구조물 성능 검토 수치해석 - Case study: 부산 백양산)

  • Jeong, Seokil;Song, Chag Geun;Kim, Hong Taek;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.84-89
    • /
    • 2018
  • The number of landslides has increased since the 2000s due to the increased frequency of heavy rainfall caused by abnormal weather. A variety of debris flow prevention facilities have been installed as a countermeasure against this problem. However, it is not easy to evaluate the efficiency of debris flow prevention structures except for the structures with constant volume such as the erosion dam, because the other structures are limited to be reproduced in simulation program for debris flow. Therefore, the methods by which the debris flow prevention structures were modeled were proposed, and the efficiency of four prevention structures installed in Baekyang Mt. in Busan was evaluated with UDS, which accuracy had been verified, using these methods. The initial amount of debris flow was determined based on landslide which occurred in 2014, and specifications of the complex retaining walls around the settlements were measured and applied modeling for terrain. The numerical results showed that the efficiency of debris flow prevention structures could be quantitatively presented. Among the debris flow prevention structures installed in Baekyang Mt., prevention structure of barrier type for debris flow was the most efficiency and debris flow prevention device was the lowest efficiency when the only depth of debris was evaluated. It seems that this study is meaningful to propose the methods which were used to model the debris flow prevention structures that could not be reproduced in most 2D debris flow numerical analysis programs. If precise verification of the presented methods is carried out, it will be possible to provide clear criteria for the efficiency evaluation method of disaster prevention structures.

Depth Averaged Numerical Model for Sediment Transport by Transcritical Flows (급변류에 의한 하상변동 예측을 위한 수심적분 수치모형)

  • Kim, Boram;Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1061-1066
    • /
    • 2014
  • A stable second-order finite volume method was proposed to predict sediment transport under rapidly varied flow conditions such as transcritical flow. For the use under unsteady flow conditions, a sediment transport model was coupled with shallow water equations. HLLC approximate Riemann solver based on a monotone upstream-centered schemes for conservation laws (MUSCL) reconstruction was used for the computation of the flux terms. From the comparisons of dam break flow experiments on erodible beds in one- and two-dimensional channels, good agreements were obtained when proper parameters were provided. Lastly, dam surface erosion problem by overtopped water was simulated. Overall, the numerical solutions showed reasonable results, which demonstrated that the proposed numerical scheme could provide stable and physical results in the cases of subcritical and supercritical flow conditions.

The Seepage Behaviour and Stability of Extension Embankment by Unsteady State Seepage (비정상침투에 의한 증축제체의 침투거동과 안정성)

  • Shin, Bang-Woong;Bae, Woo-Seok;Lee, Jong-Kyu;Kang, Jong-Beom
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • In this study, the seepage behavior and the stability of the extension embankment were estimated for three cases the permeability coefficient of an extension part and the rising velocity due to the rainfall of flood period. In parallel flow condition, the unstability of the slope due to embankment erosion was examined by analyzing the variation of seepage line by the seepage modeling tests and FEM analysis, and the stability of the embankment slope accompanied by the sudden rise of the water level after the flood. The seepage behavior of extension embankment indicates that the larger permeability of the extension part the longer initial seepage distance, and the exit point from embankment slope is gradually increased, and then shows unstable seepage behavior that occurs a partial collapse as safety factor decreases with time. It is because of the increment of exit points due to variation of seepage line and rising velocities of water level. Also, the collapse aspect of embankment slope shows that the increment rising velocities of water level causes the increment collapse height and depth.

  • PDF

Development of Random Forest Model for Sewer-induced Sinkhole Susceptibility (손상 하수관으로 인한 지반함몰의 위험도 평가를 위한 랜덤 포레스트 모델 개발)

  • Kim, Joonyoung;Kang, Jae Mo;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.117-125
    • /
    • 2021
  • The occurrence of ground subsidence and sinkhole in downtown areas, which threatens the safety of citizens, has been frequently reported. Among the various mechanisms of a sinkhole, soil erosion through the damaged part of the sewer pipe was found to be the main cause in Seoul. In this study, a random forest model for predicting the occurrence of sinkholes caused by damaged sewer pipes based on sewage pipe information was trained using the information on the sewage pipe and the locations of the sinkhole occurrence case in Seoul. The random forest model showed excellent performance in the prediction of sinkhole occurrence after the optimization of its hyperparameters. In addition, it was confirmed that the sewage pipe length, elevation above sea level, slope, depth of landfill, and the risk of ground subsidence were affected in the order of sewage pipe information used as input variables. The results of this study are expected to be used as basic data for the preparation of a sinkhole susceptibility map and the establishment of an underground cavity exploration plan and a sewage pipe maintenance plan.

Experimental analysis on the morphologic changes and adaption of the channels to floodplain vegetation (홍수터 식생에 의한 하도의 지형변화와 적응과정 실험적 분석)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.801-810
    • /
    • 2022
  • This study investigates the evolution processes of alternate bars in the channel with bank stability by vegetation by laboratory experiment. Laboratory experiments are conducted to elucidate the behavior of alternate bars by the influence of riparian vegetation on the rivers with erodible banks. To control bank stability of the channel, the actual vegetation, alfalfa, is grown by adjusting the density of alfalfa on the flood plain. As the vegetation density increases in the flood plain, the bank erosion rates and the channel widening rates decrease and the bank stability increases. The alternate bars migrate slow downstream over time. Moreover, the bars in a channel with strong banks migrate rapidly, which is related with the aspect ratio, that is, width to depth ratio. The bar wavelength decrease with vegetation density. Our laboratory experiments show that the behavior of bars differ according to bank strength.

Durability Analysis and Development of Probability-Based Carbonation Prediction Model in Concrete Structure (콘크리트 구조물의 확률론적 탄산화 예측 모델 개발 및 내구성 해석)

  • Jung, Hyunjun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.343-352
    • /
    • 2010
  • Recently, many researchers have been carried out to estimate more controlled service life and long-term performance of carbonated concrete structures. Durability analysis and design based on probability have been induced to new concrete structures for design. This paper provides a carbonation prediction model based on the Fick's 1st law of diffusion using statistic data of carbonated concrete structures and the probabilistic analysis of the durability performance has been carried out by using a Bayes' theorem. The influence of concerned design parameters such as $CO_2$ diffusion coefficient, atmospheric $CO_2$ concentration, absorption quantity of $CO_2$ and the degree of hydration was investigated. Using a monitoring data, this model which was based on probabilistic approach was predicted a carbonation depth and a remaining service life at a variety of environmental concrete structures. Form the result, the application method using a realistic carbonation prediction model can be to estimate erosion-open-time, controlled durability and to determine a making decision for suitable repair and maintenance of carbonated concrete structures.

Effects of chloride ion transport characteristics and water pressure on mechanical properties of cemented coal gangue-fly ash backfill

  • Dawei Yin;Zhibin Lu;Zongxu Li;Chun Wang;Xuelong Li;Hao Hu
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • In paste backfill mining, cemented coal gangue-fly ash backfill (CGFB) can effectively utilize coal-based solid waste, such as gangue, to control surface subsidence. However, given the pressurized water accumulation environment in goafs, CGFB is subject to coupling effects from water pressure and chloride ions. Therefore, studying the influence of pressurized water on the chlorine salt erosion of CGFB to ensure green mining safety is important. In this study, CGFB samples were soaked in a chloride salt solution at different pressures (0, 0.5, 1.5, and 3.0 MPa) to investigate the chloride ion transport characteristics, hydration products, micromorphology, pore characteristics, and mechanical properties of CGFB. Water pressure was found to promote chloride ion transfer to the CGFB interior and the material hydration reaction; enhance the internal CGFB pore structure, penetration depth, and chloride ion content; and fill the pores between the material to reduce its porosity. Furthermore, the CGFB peak uniaxial compression strain gradually decreased with increasing soaking pressure, whereas the uniaxial compressive strength first increased and then decreased. The resulting effects on the stability of the CGFB solid-phase hydration products can change the overall CGFB mechanical properties. These findings are significant for further improving the adaptability of CGFB for coal mine engineering.

Monitoring of Bathymetry Changes in the Coastal Area of Dokdo, East Sea (동해 독도 연안 해저지형 변동 모니터링 연구)

  • Chang Hwan Kim;Soon Young Choi;Won Hyuck Kim;Hyun Ok Choi;Chan Hong Park;Yun Bae Kim;Jong Dae Do
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.589-601
    • /
    • 2023
  • We compare high-resolution seabed bathymetry data and seafloor backscattering data acquired, using multi-beam, between 2018 and 2021 to understand topographic changes in the coastal area of Dokdo. The study area, conducted within a 500 m × 500 m in the southern coast between the islands where Dongdo Port is located, has been greatly affected by human activities, waves and ocean currents. The depth variations exhibit between 5 - 70 m. Irregular underwater rocks are distributed in areas with a depth of 20 m or less and 30 - 40 m. As a whole, water depth ranges similar in the east-west direction and become flatter and deeper. The bathymetry contour in 2020 tends to move south as a whole compared to 2018 and 2019. The south moving of the contours in the survey area indicates that the water depth is shallower than before. Since the area where the change in the depth occurred is mainly formed of sedimentary layers, the change in the coast of Dokdo were mainly caused by the inflow of sediments, due to the influence of wind and waves caused by these typhoons (Maysak and Haishen) in 2020. In the Talus area, which developed on the shallow coast between Dongdo and Seodo, the bathymetry changed in 2020 due to erosion or sedimentation, compared to the bathymetry in 2019 and 2018. It is inferred that the changes in the seabed environment occur as the coastal area is directly affected by the typhoons. Due to the influence of the typhoons with strong southerly winds, there was a large amount of sediment inflow, and the overall tendency of the changes was to be deposited. The contours in 2021 appears to have shifted mainly northward, compared to 2020, meaning the area has eroded more than 2020. In 2020, sediments were mainly moved northward and deposited on the coast of Dokdo by the successive typhoons. On the contrary, the coast of Dokdo was eroded as these sediments moved south again in 2021. Dokdo has been largely affected by the north wind in winter, so sediments mainly move southward. But it is understood that sediments move northward when affected by strong typhoons. Such continuous coastal change monitoring and analysis results will be used as important data for longterm conservation policies in relation to topographical changes in Dokdo.

Application of Reduce Tillage with a Strip Tiller and its Effect on Soil Erosion Reduction in Chinese Cabbage Cultivation (배추 재배에 있어 경운방법에 따른 작업효율성 및 토양유실 특성 평가)

  • Lee, Jeong-Tae;Lee, Gye-Jun;Ryu, Jong-Soo;Hwang, Seon-Woong;Park, Suk-Hoo;Zhang, Yong-Seon;Jeong, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.970-976
    • /
    • 2011
  • Strip tiller equipment was developed to reduce soil erosion in the slope land for highland agricultural area. The equipment consisted of 4 rows strip tillage device and fertilizer applicator. The field was tilled in 10 cm width and in 10 cm depth by the equipment, of which tilled surface was 16.7% of full-width tillage. The working time and fuel consumption of the equipment were $3.8hours\;ha^{-1}$ and $24.4L\;ha^{-1}$ respectively, which were 59% and 74% less than those of the conventional tillage. Fertilizer efficiency of the equipment in cultivation of Chinese cabbage was 1.7, 1.6 and 1.5 times higher in nitrate, phosphorous and potassium respectively, than conventional tillage. When the equipment was used after covering of rye residue, the quantity of runoff was 49~67% lower than the conventional tillage. And the quantity of soil loss were 1.3 and $0.2Mg\;ha^{-1}$ at right after and 30 days after planting of Chinese cabbage respectively, while 11.5 and $4.1Mg\;ha^{-1}$ in conventional tillage. In conclusion, the strip tillage equipment developed in this study can be applicable to slope land, so that soil loss of 90% can be reduced.

Soil Physiochemical Properties in Leaf-yellowing Black Locust (Robinia Pseudo-acacia L.) Stands (아까시나무 황화현상 발생임분의 토양 이화학적 특성)

  • Lee, Seung-Woo;Byun, Jae-Kyoung;Ji, Dong-Hun;Kwon, Young-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.409-414
    • /
    • 2009
  • In 1970's Black locust(Robinia pseudoacacia) had been widely planted Korea as an important forest greening species for erosion control afforestation. Since 2000, however, the tree's leaf-yellowing symptom has often been observed at a limited region and then spreaded out over the country in 2006. This study was conducted to study soil physiochemical properties of black locust stands with and without the leaf-yellowing symptom in Osan, Gyeonggi province. Most of soils in sampling sites were mostly slightly eroded, dry, and moderately dry. Available soil depth(16cm) and total soil depth(26cm) in leaf-yellowing (LY) site were significantly lower than in non leaf-yellowing (Non-LY) site's soil depths which were 30cm and 56cm, respectively. And solid phase proportion and bulk density in soils were lower in LY site than in non-LY site soils, while soil liquid phase proportion was also low. It could reflect that LY site soils might have a lower air and moisture movement in the rhizosphere of black locust stand compared with non-LY site soils. Soil acidity in both sites was very strong acid, soil pH (4.42) of LY site was slightly lower than non-LY site's (pH 4.54). Content of available phosphorous, exchangeable $Ca^{2+}$ and $Mg^{2+}$ and percent base saturation were less than LY site. These results indicated that soil physiochemical condition in LY site, more deteriorated than non-LY site, should adversely affect the retention and supply capacity of soil nutrients and moisture. Therefore the black locust may be more sensitive to other environmental stresses.