• Title/Summary/Keyword: ergodic rate

Search Result 29, Processing Time 0.028 seconds

Simulation Models for Investigation of Multiuser Scheduling in MIMO Broadcast Channels

  • Lee, Seung-Hwan;Thompson, John S.
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.765-773
    • /
    • 2008
  • Spatial correlation is a result of insufficient antenna spacing among multiple antenna elements, while temporal correlation is caused by Doppler spread. This paper compares the effect of spatial and temporal correlation in order to investigate the performance of multiuser scheduling algorithms in multiple-input multiple-output (MIMO) broadcast channels. This comparison includes the effect on the ergodic capacity, on fairness among users, and on the sum-rate capacity of a multiuser scheduling algorithm utilizing statistical channel state information in spatio-temporally correlated MIMO broadcast channels. Numerical results demonstrate that temporal correlation is more meaningful than spatial correlation in view of the multiuser scheduling algorithm in MIMO broadcast channels. Indeed, the multiuser scheduling algorithm can reduce the effect of the Doppler spread if it exploits the information of temporal correlation appropriately. However, the effect of spatial correlation can be minimized if the antenna spacing is sufficient in rich scattering MIMO channels regardless of the multiuser scheduling algorithm used.

  • PDF

Finite-Horizon Online Transmission Scheduling on an Energy Harvesting Communication Link with a Discrete Set of Rates

  • Bacinoglu, Baran Tan;Uysal-Biyikoglu, Elif
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.293-300
    • /
    • 2014
  • As energy harvesting communication systems emerge, there is a need for transmission schemes that dynamically adapt to the energy harvesting process. In this paper, after exhibiting a finite-horizon online throughput-maximizing scheduling problem formulation and the structure of its optimal solution within a dynamic programming formulation, a low complexity online scheduling policy is proposed. The policy exploits the existence of thresholds for choosing rate and power levels as a function of stored energy, harvest state and time until the end of the horizon. The policy, which is based on computing an expected threshold, performs close to optimal on a wide range of example energy harvest patterns. Moreover, it achieves higher throughput values for a given delay, than throughput-optimal online policies developed based on infinite-horizon formulations in recent literature. The solution is extended to include ergodic time-varying (fading) channels, and a corresponding low complexity policy is proposed and evaluated for this case as well.

The Scheduling Problem in Wireless Networks

  • Pantelidou, Anna;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.489-499
    • /
    • 2009
  • We describe the fundamental issue of scheduling the allocation of wireless network resources and provide several formulations of the associated problems. The emphasis is on scheduling transmission attempts. We place this problem in the context of existing approaches, like information theoretic and traditional network theoretic ones, as well as novel avenues that open up the possibility of addressing this issue for non-stationary and non-ergodic environments. We summarize concrete recent results for specific special cases that include unicast and multicast traffic, different objective functions, and reduced complexity versions of the problem. We conclude with some thoughts for future work. We identify and single out the cross-layer nature of the problem and include a simple physical-layer criterion in what is mostly a medium access control (MAC) problem.

Outage Probability Analysis of Space-Time Line Code System (시공간 선 부호 시스템의 아웃티지 확률 분석)

  • Kim, Hyeonsoo;Lee, Juyoung;Yang, Seung Geon;Lim, Seung-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.536-538
    • /
    • 2022
  • Since the invention of a novel diversity technique, namely a space-time line code (STLC), though the previous studies have theoretically analyzed the error rate and ergodic capacity, the outage probability has not been revealed yet. In this paper, we characterize the probability density function of the instantaneous signal-to-noise ratio, and mathematically derive the closed-form expression of the outage probability. Based on numerical simulations, furthermore, we validate the accuracy of the mathematical analysis, and present the insight into the system design and implementation.

  • PDF

A Study of Connectivity in MIMO Fading Ad-Hoc Networks

  • Yousefi'zadeh, H.;Jafarkhani, H.;Kazemitabar, J.
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2009
  • We investigate the connectivity of fading wireless ad-hoc networks with a pair of novel connectivity metrics. Our first metric looks at the problem of connectivity relying on the outage capacity of MIMO channels. Our second metric relies on a probabilistic treatment of the symbol error rates for such channels. We relate both capacity and symbol error rates to the characteristics of the underlying communication system such as antenna configuration, modulation, coding, and signal strength measured in terms of signal-to-interference-noise-ratio. For each metric of connectivity, we also provide a simplified treatment in the case of ergodic fading channels. In each case, we assume a pair of nodes are connected if their bi-directional measure of connectivity is better than a given threshold. Our analysis relies on the central limit theorem to approximate the distribution of the combined undesired signal affecting each link of an ad-hoc network as Gaussian. Supported by our simulation results, our analysis shows that (1) a measure of connectivity purely based on signal strength is not capable of accurately capturing the connectivity phenomenon, and (2) employing multiple antenna mobile nodes improves the connectivity of fading ad-hoc networks.

Limited Feedback Precoding for Correlated Massive MIMO Systems (공간 상관도를 가지는 거대배열 다중안테나 시스템에서 압축채널 제한적 피드백 알고리즘)

  • Lim, Yeon-Geun;Chae, Chan-Byoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.431-436
    • /
    • 2014
  • In this paper, we propose a compressive sensing-based channel quantization feedback mechanism that is appropriate for practical massvie multiple-input multiple-output (MIMO) systems. We assume that the base station (BS) has a compact uniform square array that has a highly correlated channel. To serve multiple users, the BS uses a zero-forcing precoder. Our proposed channel feedback algorithm can reduce the feedback overhead as well as a codebook search complexity. Numerical simulations confirm our analytical results.

A Study on System Availability Analysis Utilizing Markov Process (마르코프 프로세스를 활용한 시스템 가용도 분석 방법 고찰)

  • Kim, Bohyeon;Kim, Seongkyung;Pagulayan, Dhominick;Hur, Jangwook
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.295-304
    • /
    • 2016
  • Purpose: This paper presents an application of Markov Process to reliability and availability analysis. In order to do that of analysis, we set up a specific case of Tablet PC and it's usage scenario. The case has it some spares and maintenance and repair processes. Methods: Different configurations of the tablet PC and as well as their functions are defined. The system configuration and calculated failure rates of components are modeled from Windchill Quality Solution. Two models, without a spare and with spare, are created and compared using Markov Process. The Matlab numerical analysis is used to simulate and show the change of state with time. Availability of the system is computed by determining the time the system stays in different states. Results: The mission availability and steady-state condition availability in accordance with the mission are compared and the availability of the system with spares have improved availability than without spares. Simulated data shows that downtime of the system increased which results in greater availability through the consideration of spares. Conclusion: There's many techniques and methods to do reliability and availability analysis and mostly are time-independent assumptions. But Markov Process, even though its steady-state and ergodic properties, can do time analysis any given time periods.

Selection of the Best Two-Hop AF Wireless Link under Multiple Antenna Schemes over a Fading Channel

  • Rahaman, Abu Sayed Md. Mostafizur;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.57-75
    • /
    • 2015
  • In evaluating the performance of a dual-hop wireless link, the effects of large and small scale fading has to be considered. To overcome this fading effect, several schemes, such as multiple-input multiple-output (MIMO) with orthogonal space time block codes (OSTBC), different combining schemes at the relay and receiving end, and orthogonal frequency division multiplexing (OFDM) are used in both the transmitting and the relay links. In this paper, we first make compare the performance of a two-hop wireless link under a different combination of space diversity in the first and second hop of the amplify-and-forward (AF) case. Our second task in this paper is to incorporate the weak signal of a direct link and then by applying the channel model of two random variables (one for a direct link and another for a relayed link) we get very impressive result at a low signal-to-noise ratio (SNR) that is comparable with other models at a higher SNR. Our third task is to bring other three schemes under a two-hop wireless link: use of transmit antenna selection (TAS) on both link with weak direct link, distributed Alamouti scheme in two-hop link and single relay antenna with OFDM subcarrier. Finally, all of the schemes mentioned above are compared to select the best possible model. The main finding of the paper is as follows: the use of MIMO on both hops but application TAS on both links with weak direct link and the full rate OFDM with the sub-carrier for an individual link provide a better result as compared to other models.

Automatic Classification of Continuous Heart Sound Signals Using the Statistical Modeling Approach (통계적 모델링 기법을 이용한 연속심음신호의 자동분류에 관한 연구)

  • Kim, Hee-Keun;Chung, Yong-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.144-152
    • /
    • 2007
  • Conventional research works on the classification of the heart sound signal have been done mainly with the artificial neural networks. But the analysis results on the statistical characteristic of the heart sound signal have shown that the HMM is suitable for modeling the heart sound signal. In this paper, we model the various heart sound signals representing different heart diseases with the HMM and find that the classification rate is much affected by the clustering of the heart sound signal. Also, the heart sound signal acquired in real environments is a continuous signal without any specified starting and ending points of time. Hence, for the classification based on the HMM, the continuous cyclic heart sound signal needs to be manually segmented to obtain isolated cycles of the signal. As the manual segmentation will incur the errors in the segmentation and will not be adequate for real time processing, we propose a variant of the ergodic HMM which does not need segmentation procedures. Simulation results show that the proposed method successfully classifies continuous heart sounds with high accuracy.