• Title/Summary/Keyword: equivariant vector bundle structure

Search Result 2, Processing Time 0.014 seconds

Equivariant vector bundle structures on real line bundles

  • Shu, Dong-Youp
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.259-263
    • /
    • 1996
  • Let G be a topological group and X a G space. For a given nonequivariant vector bundle over X there does not always exist a G equivariant vector bundle structure. In this paper we find some sufficient conditions for nonequivariant real line bundles to have G equivariant vector bundle structures.

  • PDF

STABLE CLASS OF EQUIVARIANT ALGEBRAIC VECTOR BUNDLES OVER REPRESENTATIONS

  • Masuda, Mikiya
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.331-349
    • /
    • 2002
  • Let G be a reductive algebraic group and let B, F be G-modules. We denote by $VEC_{G}$ (B, F) the set of isomorphism classes in algebraic G-vector bundles over B with F as the fiber over the origin of B. Schwarz (or Karft-Schwarz) shows that $VEC_{G}$ (B, F) admits an abelian group structure when dim B∥G = 1. In this paper, we introduce a stable functor $VEC_{G}$ (B, $F^{\chi}$) and prove that it is an abelian group for any G-module B. We also show that this stable functor will have nice properties.