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EQUIVARIANT VECTOR BUNDLE
STRUCTURES ON REAL LINE BUNDLES

DonG YouPr Sun

ABSTRACT. Let G be a topological group and X a (7 space. For a given
nonequivariant vector bundle over X there does not always exist a G
equivariant vector bundle structure. In this paper we find some sufficient
conditions for nonequivariant real line bundles to have G equivariant
vector bundle structures.

1. Introduction

Let G be a topological group, and let X be a G space. Let £ be
a nonequivariant real vector bundle over X. We say that £ has a G
equivariant vector bundle structure if there is a G vector bundle over X
which is nonequivariantly isomorphic to £. The question we are inter-
ested in here is when does € have a G equivariant real vector bundle
structure. It is obvious that not every nonequivariant vector bundle has
a G equivariant vector bundle structure, see Example 1.2. In this note
we study the question for real line bundles.

It is well known in vector bundle theory that the isomorphism classes
of real line bundles over X are in one to one correspondence with the
first cohomology class o € H'(X,Z;) of X, where the isomorphism
class of a line bundle ¢ corresponds to its first Stiefel-Whitney class
w!(¢) € HY(X,Z,)[2, p 236 Theorem 3.4].

Since G acts on X the action induces an action of G on H*(X,Z2).
Let £ be a G equivariant real line bundle over X. 'Then by the naturality
of Stiefel-Whitney classes we have

w'(€) = g"w' ()
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for all ¢ € G [4, p37]. This implies that w'(¢) € H(X,Z;)¢. 1In
other words one of the necessary conditions for a nonequivariant real
line bundle £ to have a G equivariant vector bundle structure is that its
Stiefel- Whitney classes w*(€) lie in H (X,Z3)C. Sometimes this neces-
sary condition is sufficient for a nonequivariant vector bundle to have
a G equivariant vector bundle structure. In fact we have the following
theorem. Since trivial nonequivariant bundles over G spaces have obvi-
ous G-equivariant vector bundle structures we only consider nontrivial
vector bundles.

THEOREM 1.1. Let G be a topological group and X a connected G
space. A given nontrivial nonequivariant real line bundle ¢ over X has
a G equivariant vector bundle structure if

L. the first Stiefel-Whitney class w'(€) € H'(X,Z,)9, and
2. if one of the following conditious is satisfied:
(a) X is locally pathconnected and X ¢ 7 0.
(b) G is of odd order, or more generally & is a discrete group
whose second group cohomology H*(13,Zy) = 0.

The above theorem is in a sense ‘complete’ because the following
example shows that there exists a nonequivariant real line bundle over a
G circle without a G equivariant vector bundle stricture for even order

cyclic group G in which case H%(G, Zy) # 0.

EXAMPLE 1.2. Let G be the cyclic group of order 2d. Let V he the
orthogonal 2 dimensional G representation space where the generator of
G acts on V as the rotation by 7/d. Let S(V) be the unit circle, and
let € be the nontrivial nonequivariant real line bun le over S(V'). Then
¢ does not have a G equivariant real line bundle structure,

PRrROOF. It is proved by Kim and Masuda in [2] that for any com-
pact Lie group K every K equivariant real line buadle over I circle is
equivariantly isomorphic to either a trivial bundle S(U)xé — S(U) or
a nontrivial bundle S(U) xz, § — S(U)/Z, = P(U according as the G
line bundle L — §! is nonequivariantly trivial or not for some orthogo-
nal representation space U of K. Here P(U) is the -eal projective space
of U. Thus if V is as above, then it is easy to see thet there is no orthog-
onal representation space U of G such that S(V) is G homeomorphic to
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P(U). This implies that £ does not have a G equivariant vector bundle
structure.

It should be noted that the real line bundle ¢ in the above example
does have a G’ equivariant real line bundle structure where G' is the
cyclic group of order 4d and V is viewed as an orthogonal representation
of G’ where the generator acts as the rotation by n /d. Such phenomenon
1s not accidental. In fact we have the following:

PROPOSITION 1.3. Let X be a connected G space and £ a nonequiv-
ariant real line bundle over X. If the first Stiefel-Whitney class w!(§€)
lies in H'(X,Z,)“, then there exists an extensicn G' of Zw by G such
that € has a G' equivariant vector bundle structure. Here we consider

X as a G’ space with the obvious G' action.

In Chapter 1 Section 9 of [1] liftings of actions of Lie groups on base
spaces to covering spaces are treated, and we could possibly reach a sim-
ilar conclusion if we treat our problem as a pure covering space theoretic
one as Bredon did. However our approach is simpler, and we do not
assume the acting group to be a Lie group.

The author would like to express his appreciation to the referee for
generalizing the original results.

2. Proof of the main results

We first prove Proposition 1.3. Suppose ¢ is a nontrivial nonequivari-
ant real line bundle over X such that w!(€) € HY(X,Z,)C. Let X = S(¢)
be the corresponding unit sphere bundle of €, which is a double cover of
X. For each ¢ € G we want to construct a map § - X — X which covers
the map g : X — X to as follows. Let ¢*(§) = {(z.v) € X x £ | g7 = pv}
be the total space of the pull back bundle of £ by the map ¢ : X — X.
Let ¢' : ¢g*(€) — &£ be the induced bundle map. By the naturality of
characteristic classes

w'(g*(€)) =g w'(€)
=w'(¢) (because w'(£) € H'(X,Z*))
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Thus the vector bundle g*(¢) is isomorphic to £. Let ¢, : & — g*(£) be
a bundle isomorphism. Now define g : & — € be the composition

g:g'ogﬁg,

Then g is a bundle map which covers the map g: X — X.

Note that if ¢, : £ — ¢*(¢) is a bundle isomorphism then —¢, :
£ — g*(£) defined by (—¢g)(v) = ~¢4(v) 1s also a bundle 1somorphism.
Therefore for each ¢ : X — X there are two maps ¢ and —¢g which
cover ¢ where —§ = ¢’ o (—¢,). It is clear that ~¢ 1s nothing but g
composed with map induced from the nontrivial deck transformation of
the covering space X of X. Now let G/ = {§,~9 g € G}. Then since
X is connected it is clear that G' has a group structure so that we have
the following exact sequence of groups:

0-A-SG oG —0

where A 22 Z, is the deck transformation group of the double covering
space X. The covering maps § and —¢ clearly extends to bundle maps
£ — € which we still call § and —§. Thus G’ can be considered as a
group of bundle automorphisins of £. This proves Proposition 1.3.

In general the above exact sequence of groups does not split, and
Example 1.2 is one of such kind. A nonequivariant real line bundle has a
G vector bundle structure if and only if the above exact sequence splits.
Therefore Theorem 1.1 is proved if the exact sequence splits under the
given hypotheses.

We now prove Theorem 1.1. First assume tha: X is locally path-
connected and X # (. Let 2o € X¢. Choose o € p~zy) where
p: X — X is the covering projection. From the elementary theory of
covering spaces there exists unique map § : X — X which covers the
map ¢ : X — X such that §(ig) = #,. This defines a sphtting map
7 : G — G’ in the above exact sequence. This proves the first part. For
the second part consider the following [5, p 151]:

LEMMA 2.1. [Schur-Zassenhaus] If A and G are finite group of order
m and n, respectively, and if (m,n) = 1, then every extension G' of A
by G is a semidirect product.
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Since the order of G is odd and A is of order 2 the group G' is
a semidirect. Hence the above exact sequence splits by a property of
semidirect product.

For the general case all we need is the following, see [5, p150]

LEMMA 2.2. Let K be abelian. If a discrete group G has H*(G,K) =
0 then any extension of K by G is a semidirect product.
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