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STABLE CLASS OF EQUIVARIANT ALGEBRAIC
VECTOR BUNDLES OVER REPRESENTATIONS

Mikiva MASUDA

Dedicated to Professor Fuichi Uchida on his 60th birthday

ABSTRACT. Let G be areductive algebraic group and let B, F' be G-
modules. We denote by VEC,, (3, F) the set of isomorphism classes
in algebraic G-vector bundles over I3 with F as the fiber over the
origin of B. Schwarz (or Kraft-Schwarz) shows that VEC¢(B, F')
admits an abelian group structure when dim BJG = 1. In this
paper, we introduce a stable functor VEC¢; (B, F™>) and prove that
it is an abelian group for any G-module B. We also show that this
stable functor will have nice properties.

1. Introduction

Throughout this paper, we will work in the algebraic category over
the field of complex numbers C and G will denote a reductive group
unless otherwise stated. Finite groups, C*-tori (i.e., products of C* =
C\{0}) and semisimple groups are examples of reductive groups, and it
is known that any reductive group is obtained as a group extension by
these three types of groups (see [2] for example). One may also think
of a reductive group as “complexification” of a compact Lie group (see
[20] for example), e.g. the complexification of the circle group S! is C*.

The research of this paper is motivated by the following problem.

Equivariant Serre Problem. Is any G-vector bundle over a G-module
B (= a G-representation spacc) trivial, i.e., isomorphic to a product
bundle F := B x F' — B for some G-module F'7
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One can ask the same question in other categories. It is a classical
result that the problem has an affirmative solution in the smooth cate-
gory because the base space B is equivariantly contractible. Recently it
has affirmatively been answered in the holomorphic category ([5]).

However, the situation is not so simple in the algebraic category.
When G is trivial, the Equivariant Serre Problem is nothing but the fa-
mous Serre conjecture which was solved affirmatively by D. Quillen [18]
and A. Suslin [21]. This result is extended to the case when G is abelian
by Masuda-Moser-Petrie [14]. Another type of partial affirmative solu-
tion to the problem is as follows. The affine variety B /G, whose coor-
dinate ring is the ring O(B)¢ of G-invariant polynomials on B, is called
the algebraic quotient of B by the G-action. When dim B//G = 0, it
follows from Luna slice theorem [10] that the Equivariant Serre Problem
has an affirmative solution. G. Schwarz [19] (see also [8]) attacked the
next case where dim B//G = 1, and surprisingly found counterexamples
to the problem for many non-abelian groups G. After his breakthrough,
more counterexamples have been found ([6], [13, 15], [16, 17]), where
dim B /G is not necessarily one. On the other hand, Bass and Haboush
([4]) proved (before the breakthrough by Schwarz) that every G-vector
bundle over a G-module is stably trivial, i.e., it becomes trivial when
added to a suitable trivial G-vector bundle, for any G. See [12] for more
information on our subject.

For G-modules B and F' we denote by VECg(B, F') the set of iso-
morphism classes in G-vector bundles over B whose fiber over the origin
is isomorphic to F. We often abbreviate a G-vector bundle 7: £ —
B as E, and denote its isomorphism class by [E]. Needless to say,
VECqg(B, F) contains the isomorphism class of the product bundle F,
and if VECg(B, F) contains an element different from [F], then it pro-
vides a counterexample to the Equivariant Serre Problem. Following
(16, 17] we also consider a subset

VECG(B, F;S) := {|E] € VEC¢(B,F) | [E®S] = [F & S|}

for a G-module S. The result of Bass and Haboush mentioned above
says that the union of VECq(B, F; S) over all G-modules S agrees with
VEC¢(B, F).

Schwarz [19] (and Kraft-Schwarz [8]) proved that if dim B/G = 1,
then VEC¢(B, F) admits an abelian group structure and is isomorphic
to CP for some non-negative integer p depending on B and F'. They also
established a formula to compute the dimension p in terms of invariant
theory and found that p could be positive for many G, B and F'.
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The group structure on VEC; (B, F') is as follows. When dim B//G =
1, they showed that the Whitncy sum with F induces a bijective corre-
spondence

(+) VECg(B,F) — X~ VECg(B,F & F).

Therefore, given [E;] and [Ep] in VECq (B, F), there is a unique ele-
ment [E3] in VECg(B, F) such that [E; ® Ey] = [E3 @ F], and the
sum of [F1] and [E»] is defined to be [Es], giving the abelian group
structure on VECg(B, F). The map (*) above also induces a bijec-
tion between VECg (B, F; S) and VEC¢ (B, F @ F; S) for any S, so that
VECs(B, F; S) becomes a subgroup of VECg(B, F) when dim Bj/G =
1.

However, when dim B /G > 2, the map () above is not known to be
bijective, so we do not know whether VECg(B, F') admits an abelian
group structure under Whitney sum. To get around this, we consider
the following direct system

_OF  VECe(B,F') °E VECG(B, Frt)
where F" denotes the direct sum of n copies of F', and dcfine

VECq(B, <) := lim VECo(B, F™).

n

eF
—

Similarly VECg(B, F>; S) can he defined. VECg (B, F°°) and VECg(B
F; §) are apparently abelian monoids under Whitney sum, but it turns
out

THEOREM 1.1. VECqg(B, F™) is an abelian group and VECg(B,
F®; 8) is its subgroup under Whitncy sum for any G-modules B, F
and S.

REMARK. VECg(B, F*°) and VEC (B, F°°; S) are both trivial when
dim B//G = 0, and isomorphic to VECg(B, F) and VECg(B, F; S) re-
spectively when dim B /G = 1.

In the proof of the theorem above, we define a surjective homomor-

phism
V: (R/I)* —» VECG(B, F™;5),

where R is the ring of G-vector bundle endomorphisms of S, [ is a
two sided ideal in R and (R/I)* is the group of units in R/I. Note
that when S is the trivial one-dimensional module C, R is isomorphic
to O(B)%, in particular, commutative. The homomorphism V has a
nontrivial kernel I'* in general. When (R/I)* is commutative (e.g.
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S = C), one can transfer the multiplicative group (R/I)*/T* to an
additive group isomorphically using a logarithmic map. It turns out
that the additive group is a finitely generated O(B)%-module. Thus we
have

THEOREM 1.2. If R/I is commutative (e.g. S = C), then VECg(B,
F>; 8) is isomorphic to a finitely generated O(B)%-module, in partic-
ular, a complex vector space (of possibly countably infinite dimension)
as groups.

The author believes that the theorem above would hold without the
commutativity assumption on R/I and even for VECg(B, F*°). In fact,
when dim BJG = 1, VECg(B, F*) is isomorphic to VECg(B, F) as
remarked above and VECg(B, F') is isomorphic to a truncated polyno-
mial ring C[t]/(¢P) in one variable ¢ for some non-negative integer p by
the result of Schwarz. The assumption that dim BG = 1 is equivalent
to O(B)% being a polynomial ring in one variable, so C[t] can be iden-
tified with O(B)¢ and then C[t]/(t?) is certainly a finitely generated
O(B)%-module in this case.

When dim B//G = 1, Schwarz proved more. He showed that there is
a “universal” G-vector bundle £ € VECg(B @ C?, F') such that map-
ping ¢ € CP to &|px(c} € VECg(B, F) is bijective. Let m be a non-
negative integer. To any morphism (i.e., polynomial map) f: C™ —
CP = VECg(B,F), we assign a bundle induced from &£ by a map
1® f: B C™ — B @ CP. This produces a map
Mor(C™, VECg(B, F)) = VECg (B, F) ® O(C™) — VECg(B& C™, F)
where Mor(X,Y") denotes the set of morphisms from X to Y and the
tensor product is taken over C. The universality of the bundle £ implies
that the above map is injective, and it is claimed in [11] that the map

is actually bijective. The following result implies that there might exist
the product formula above even when dim B /G > 2.

THEOREM 1.3. If R/I is commutative (e.g. S = C), then
VECg(B @ C™, F>;8) = VECg(B, F™; S) ® O(C™)
as groups.
This paper is organized as follows. In Section 2 we review the method
introduced in {16, 17| to produce elements in VECg(B, F'; S) and to
distinguish them. It is the main tool used in this paper. We discuss

its stable version in Section 3 and Theorem 1.1 is proved in Section
4. In Section 5 we consider a C*-action on B commuting with the
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G-action. In Section 6 we study (R/I)*/I"*°, which is isomorphic to
VEC¢(B, F*; S), using the C*-action on B when R/I is commutative,
and prove Theorem 1.2. Theorem 1.3 is proved in Section 7.

2. Subbundle method

In this section we review the method introduced in [16, 17]. Let
[E] be an element of VECg(B, F;S§). Since E @ S is isomorphic to
F @S, there is a G-vector bundle surjective homomorphism L : F&S —
S whose kernel ker L is isomorphic to E. Let L' : F® S — S be
another surjective homomorphism. Then it is not difficult to see that
ker L' is isomorphic to ker L if and only if there is a G-vector bundle
automorphism A of F @ S such that L' = LA. Therefore, the study
of VECg(B, F; S) splits into two steps: one is the study of G-vector
bundle surjective homomorphisms from F @ S to S (in other words,
construction of G-vector bundles) and the other is the study of G-vector
bundle automorphisms of F @ S (in other words, distinction of G-vector
bundles). One can formulate this as follows. Let sur(F @ S, S)% be the
set of G-vector bundle surjective homomorphisms from F @ S to S and
let aut(F®S)® be the group of G-vector bundle automorphisms of F&S.
The group aut(F @ S)¢ acts on sur(F @ S, S)% as above. Then the fact
mentioned above can be restated as follows.

THEOREM 2.1 ([16, 17]). The map sending L € sur(F @ S,S)¢ to
ker L induces a bijection

sur(F & S,8)¢/ aut(F © S)¢ = VECg(B, F; S).
The following example will illustrate our method well.

EXAMPLE 2.2. Let Oy = C* x7Z/2. For a positive integer n we denote
by V, the 2-dimensional Oz-module with the actions of g € C* and of
the nontrivial element in Z/2 respectively given by

(5 %) (Ts)

Then one easily checks that @(V,,)°? is a polynomial ring in one variable
and it is proved in [19] that VECq,(V1, V;,) & C™ ! and VECo,(V1, Vin)
= VECq, (V1,V;n:C). This provided the first counterexamples to the
Equivariant Serre Problem.

Here is an explicit description of elements in VECo,(V1, Vi) found
in [16, 17]. To a polynomial f(¢) in one variable ¢ with f(0) = 1, we
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associate

Ef = {(a,b,2,y,2) € Vi x (Viu ®C) | V"' + 0™y + f(ab)z = 0},
where (a,b) € Vi, (z,y) € Vi, and z € C. Taking the projection on V7,
one sees that Ey defines an element of VECo,(V1, Vin,;C). In fact, the
1 x 3 matrix Ly := (b™,a™, f(ab)) is of rank one at any point (a,b) € V1,
S0

Li:Vix(VpoC -V xC
is a surjective Oz-vector bundle homomorphism and ker Ly = Ey.

On the other hand, it follows from the equivariance that an Og-vector
bundle automorphism A of the product bundle V; x (V;, ®#C) isa 3 x 3
matrix of this form

p a*mq a™r
A= v¥®q p b |,
s a™ms  w
where p, ¢, 7, s, w are polynomials in ab = ¢. An elementary computa-
tion shows that

det A= (p — t"q)(pw + t"'qw — 2t™rs).

Since A is algebraic and invertible, det A must be a nonzero constant
and hence so are the both factors above. 1t follows that

w = a nonzero constant (mod t™).

Let h(t) be another polynomial with A(0) = 1 and suppose that
[En] = [Ef] in VECo,(V1,Vm;C). Then L, = LA for some auto-
morphism A. Comparing the last entries in Ly and Ly and using the
congruence on w above, one concludes that h(t) = f(t) (mod t™). This
shows that the correspondence : C™"! — VECq,(V1, Vin; C) given by
(Cly. . yCme1) — [Ec), where ¢(t) = 1+cit+- -+ cm-1t™1, is injective.
A more careful but elementary observation shows that this correspon-
dence is bijective.

In this case, the universal bundle £ mentioned in the introduction
can be described as

£ ={(a,b,c1,...,cm-1,%,9,2) € (V1 @C™ ) x (V;, ® C)
| 07z + a™y + c(ab)z = 0}
with the projection on V; x C™1,
The following general argument was developed keeping the above

example in mind. We review the definition of the invariants which dis-
tinguish elements in VECq(B, F'; S).
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For G-vector bundles P and () over the same base space B, we denote
by mor(P, Q)% the set of G-vector bundle homomorphisms from P to
Q. We write an element L in sur(F @ S.8)C as L = (L(F, S), L(S,S))
where L(F,S) € mor(F,S)¢ and L(S,S) € mor(S,8)¢ =: R. Since L
1s a surjective homomorphism and G is reductive, there is an element
M € mor(S,F @ S)% such that LAl is the identity map on S (see [3]),
ie.,

L(S,8)M(S,S) + L(F.S)M(S, F) = 1,

where M(S,S) and M (S, F) are defined similarly to L(S, S) and L(F, S).
We denote by I the ideal in R generated by G-vector bundle endomor-
phisms of 8 which factor through F, i.e., [ is generated by composition
of elements in mor(F, S)¢ and wor(S, F)¢. The identity above implics
that L(S,S) is in (R/I)*, i.e., a unit in R/I.

Now let A be an element in ant(F®S)¢. Then ker(LA) is isomorphic
to ker L and we have

(LA)(S,S) = L(F.S)A(S, F) + L(S.8)A(S, S).

where A(S, F') and A(S, S) are defined similarly to L(F,S) and L(S, S).
The first term at the right hand side above is an element of [ and it
is not difficult to see that A(S.S) is a unit in R/I. Therefore, if we
denote by T" the subgroup of (R/I)* represented by elements A(S, S) for
A ¢ ant(F ® S)¢, then we have a well-defined map

p: VEC¢(B.F;S) — (R/I)'/T

sending [ker L] to the equivalence class of L(S,5). This is the invariant
introduced in [16, 17] and used to distinguish elements in VEC¢ (B, F; S)
(see also [13, 15]). In Example 2.2, one can check that R = O(V})02 =
Clt] (t = ab), I = (t™) and I" = C*; so (R/I)*/T bijectively corresponds
to the sct of truncated polynomials of degree at most m — 1 and with
constant term 1. Moreover, the mnap p is bijective in this case. There arc
many cases where p is bijective hut it is not known whether p is always
bijective. However we will sce later that the map p™ induced from p on
VECg(B, F~; S) is bijective for any G-modules B, F and S.

3. Stabilization

First we make sure that VEC¢ (B, F>;S5) is closed under Whitney
sum. Suppose [E;] € VECg(B, F"'; S) for i = 1,2. Then, since E; &S =
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F* & S, we have
Ei®F,®SYE oF2gSF"@F2@SxF1uimgs§S,

which shows that [Ey @ E»] lies in VECg(B, F™*"2; S). It follows that
VECg(B, F*; S) is closed under Whitney sum.

VECg(B, F*°; §) can be described in terms of sur and aut as in The-
orem 2.1. We think of sur(F" ® S, S)C (resp. aut(F" ® S)%) as a subset
(resp. a subgroup) of sur(F"*! @ 8,8)¢ (resp. aut(F**! @ S)%) by
defining to be zero (resp. the identity) on the added factor F, and define
sur(F< @S, 8)C (resp. aut(F*@S)%) to be the union of sur(F" @S, S)¢
(resp. aut(F"@S)%) over all positive integers n. The group aut(F"®S)¢
acts on sur(F” @S, S8)¢ and it follows from Theorem 2.1 that we have a
bijection

sur(F" @ S.8)%/ aut(F" @ 8)° 22 VECg(B, F™; )
for each n. Therefore, the group aut(F™ & S8)¢ acts on sur(F>® @ S, S)¢
and we obtain a bijection
(3.1) sur(F* @ 8,8)%/ aut(F* & 8)¢ = VECq(B, F>; 5).
The map p applied to F" instead of F' produces a map
p": VECg(B,F™:S) — (R/I)"/T"
for each positive integer n. Here I'” is a subgroup of (R//)* defined for
F7™, and since aut(F” @ S)© is a subgroup of aut(F"*! @ 8)¢, I' is a
subgroup of I'™!. We define I'*® to be the union of I'" over all positive
integers n. Then the maps p" induce a map
p>: VECq(B, F*;S) — (R/I)*JT.
We do not know whether p” is bijective for each n, but we will prove
the following in the next sectiomn.

THEOREM 3.1. The map p> is bijective (in fact, a group isomorphism)
for any G-modules B, F and S.

4. Proof of Theorem 1.1

As we did in the previous section for sur(F" @ S,8)%, we think of
mor(F",8)C (resp. mor(S,F")%) as a subset of mor(F**!,8)¢ (resp.
mor(S, F**t1)¢) by defining to be zero on the added factor and denote
by mor(F>,S)C (resp. mor(S,F>*)%) the union of mor(F",S)¢ (resp.
mor (S, F*)%) over all positive integers n. Let ¢1....,¢; be elements
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in mor(F*®,8)¢. Then each ¢; lics in mor(F",8)¢ for some positive
integer n;. We define

(61, @) (v) =) &i(v) forveF,

1==1

so that (é1,...,¢y) is an element in mor(Fx " 8)¢ and hence in mor(F>,
S)C.

Since mor(F, S)¢ = Mor(B, Hom(F, S))¢ and Mor(B, V)€ is finitely
generated as an O(B)%-module for any G-module V as is well-known,
mor(F,S)C is a finitely generated O(B)%-module. Let &, ®,,...,d,
be generators of mor(F,S)¢ as an O(B)%-module. We set

O = (9. Py,...,P;) € mor(F/". S)G C mor(F>, S)G
and think of it as an element of mor(F> 8)%.

LEMMA 4.1. Any element in the ideal I is of the form ®¥ with some
U € mor(S, F>)¢,

Proof. By definition, the ideal I is gencrated by elements in R =
mor(S, 8)¢ which factors through F. Thercfore, any element « in I is of
the form 3~ ¢;v; with some ¢; € mor(F, S)¢ and ¢; € mor(S, F)®. Since
®,’s are generators of mor(F.S8)% as an O(B)®-module, each ¢; is a
linear combination of ®1,...,®; over O(B)Y. Therefore, o = Yo i =
Zle ®;¥; with some ¥; € mor(S,F)¢ because mor(S, F)C is also an
O(B)®-module. This means that if we set ¥ = (U1, Uy, ..., ¥}) €
mor(S,F>*), then o = &V, O

If (¢, T) is an element of sur(F> S, S), where ¢ ¢ mor(F>,S)¢
and T € R = mor(S,S)%, then [T] in R/I is a unit as is observed in
Section 2. Converscly, if T' is an element of i whose image [T]in R/I is a
unit, then there is an element Yin /2 such that TY =1 mod I. It follows
from Lemma 4.1 that there is ¥ ¢ mor(S, F>*)¢ such that UV +7TY = 1.
This means that the pair (®,7) is an element of sur(F>* © S, 8)%.

We denote ker(¢, T') by Eo(T'). and by {E} the element in VECg(B,
F; §) determined by a G-vector bundle E. The argument above shows
that if {E4(T)} is an element in VECg(B. F>; S), then so is {E¢(T)}.
With this understood we have

LEMMA 4.2. {E,(T)} = {FEao(T)}.
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Proof. Since (¢,T) € sur(F*° @S, S)°, there are elements ¢ € mor(S,
F>~)¢ and Y € R such that ¢ + 7Y = 1. Hence we have

1 —y® 0
(,2,T)] 0 1 0 |=(s4,0T),
0 -Yo 1

where the square matrix above is in aut(F> @ S)¢. This together with
(3.1) shows that {Esge(T)} = {Eseo(T)}. Here {Esqo(T)} = {E4(T)}
because Eyg0(T) is isomorphic to Whitney sum of E,(T) and a certain
number of F. Therefore we have {E¢ge(T)} = {E4(T)}. Changing the
role of ¢ and @, we obtain {Fege(T)} = {Ee(T)}. Thus, it suffices to
prove that { Esge(T)} = {Eage(T)}, but this follows from the following

identity and (3.1):
) = ((I)a ?, T),

(¢’ Q) T) (

where the square matrix above is in aut(F® @ S)€. O

O = O
S O =
~ O O

As noted before Lemma 4.2, we have an element { E¢(T)} € VECg(B,
F*°; 8) for any T € R such that [T] € (R/I)*.

LEMMA 4.3. If[T] = [T"] € (R/I)*, then {Es(T)} = {Es(T")}.

Proof. Since T = T' mod I, there is ¥ € mor(S,F*®)% such that
T' =T + ®V by Lemma 4.1. Then

where the square matrix above is in aut(F™ @ S)¢. This together with
(3.1) proves the lemma. O

Lemma 4.3 tells us that the correspondence [T] — {Eg(T)} yields a
well-defined map

V: (R/I)* — VECG(B, F*; S),

and Lemma 4.2 tells us that V is independent of the choice of ® and is
surjective.

LemMmA 44. (1) V(1]) = {F}.
(2) v({T"'[T]) = V([T"]) @ V([T1) for any [T"],[T] € (R/I)".
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Proof. (1) Since (0,1) € sur(F> @ S,8)¢, {Fy(1)} = {Es(1)} by
Lemma, 4.2. Here Eg(1) is nothing but F, so statement (1) is proved.

(2) By definition
V([T'][T]) = V([T'T)) = {Ee(T'T)},
V([T']) = {Ea(T")},
V(1)) = {Es(T)}-
Since Fg(1l) = F by (1) above, it suffices to prove that
Ee(T'T) ® Es(1) = Eo(T") ® Eo(T).
Here the left hand side is the kerncl of

[ ® 0 TT O Ry G
L.~<O & 0 1)€bu1(F ®S®S,S®8)

while the right hand side is the kernel of

, [ ® 0 T 0 ‘ o G
L' = ( 0 ® 0 T > esur(F*®S@S,SaS)”.

Since [T] € (R/I)* and (R/I)* is a group, there is Y € R such that
TY =YT =1 mod . Set P:=1—-YT and Q := Y(Y —1). Then
P=0 modIand TQ =Y — 1 mod /. Observe that

10 0 0
L 0 1 0 0 ([ ® 0 T'+p D2
00 Y — PQ P L0 & D3 T+ py

00 Y-1-(T+P)Q T+P
where p; € I, and that

1 0 ~\I/1 *\Ifz
< d 0 T’ +p1 P2 ) 0 1 —\113 —\If‘l - L,
0 @ D3 T+ py 0 0 1 0 !
0 0 0 1

where ¥; € mor(S.F>)% such that p; = ®¥; for each i (such ¥; exists
by Lemma 4.1). One can check that the two square matrices above are
both in aut(F>* @ S @ S)“ by applying elementary operations. This
shows that the kernels of L and L', which are respectively Fe(T'T) ®F
and Ee(T') D Ee(T), arc isomorphic. O

Proof of Theorem 1.1. The map V: (R/I)* — VECq(B, F*>;85) is
surjective as noted before and ([2/I)* is a group. So it follows from

Lemma 4.4 that the abelian monoid VECg(B, F*°;S) is actually an
abelian group, i.c., any element in VEC¢ (B, F*°; S) has an inverse in it.
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It follows from the result of Bass-Haboush mentioned in the intro-
duction that the union of VECg(B, F™; S) over all G-modules S agrees
with VECg(B, F™). Therefore the union of VECg(B, F'*;S) over all
G-modules S agrees with VECq (B, F*°). Since VECg(B, F'™;5) is a
group under Whitney sum, so is VECg(B, F*°). a

Proof of Theorem 8.1. Any element in I'™ is represented by [A(S, S)]
for some A € aut(F>®° ®S)®. Since (A(F*,S), A(S,S))A~! = (0,1), the
element (A(F>,S), A(S,S)) in sur(F> ® S, S)¢ produces the trivial el-
ement in VECg(B, F'*°; S). This shows that ker YV D I'*°. On the other
hand, the composition p®V: (R/I)* — (R/I)*/T'* is just the projec-
tion, so ker V C I'*®. Thus ker V = I'*® and V induces an isomorphism
V: (R/I)*/T*® — VECg(B, F*; S). Since p®V is the identity and V is
an isomorphism, p* is also an isomorphism. O

5. C*-action and grading

Since B is a G-module, scalar multiplication gives a C*-action on
B commuting with the G-action. Keeping this example in mind, we
consider a general C*-action on B commuting with the G-action. The
C*-action induces an action on Mor(B, V)¢ and makes it a C*-module
for any G-module V. In fact, we define (cf)(z) := f(cx) for c€ C*, f €
Mor(B, V)¢ and z € B. Then Mor(B, V)¢ decomposes into a direct
sum of eigenspaces, i.e.,

Mor(B, V)% = P Mor(B, V)G,
keZ
where C* acts on Mor(B, V() as scalar multiplication by k-th power.
Note that

Mor(B, V), = Mor(B, V)“*¢" = Mor(B/C*,V)°.

For an element P € Mor(B, V)%, we denote by Py the degree £ ho-
mogeneous component of P. It is obvious that sur(F @ S,8)¢ and
aut(F @ 8)C, which are respectively subsets of Mor(B, Hom(F & S, S))¢
and Mor(B,Hom(F @ S, F & S))G, are invariant under the C*-actions,
so both of them inherit gradings. Moreover, it is obvious that the map
from sur(F @ S, S)¢ and aut(F @ S)¢ to R defined by taking the (S, S)-
component is C*-equivariant and hence so is the map p: VECg(B, F; S)
— (R/I)*/T.
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The C*-action makes O(B) a C*-module as above. We say that O(B)
is positively graded if O(B)g,) = 0 for all k < 0. The C*-actions we will
use later are the ones obtained as scalar multiplication on B or on a
factor of B when B is a direct suin of two G-modules, and O(B) is
positively graded for these actions. The following lemma can easily be
checked for them.

LeMMA 5.1 ([3]). If O(B) is positively graded for the C*-action, then
the algebraic quotient map m: 3 -~ BjC* restricted to the C*-fixed
point set B®" gives an isomorphism hetween B€ and B/C*.

We note that if the grading on O(B) is positive, then so is the grading
on Mor(B, V).

LEMMA 5.2, If O(B) is positively graded by the C*-action, then
Ly € sur(F @ 8,8)9*C" and Ay, € aut(F @ S)¢*C" for L € sur(F &
S,8)¢ and A € aut(F @ S)“.

Proof. As remarked in the previous section, there is an element M €
mor(S,F @ 8)Y such that LM is the identity. Since (LM) o) = LoyMy,
(where we usc the assumption that our grading is positive) and the
ideutity is of degree zero, it follows that LMy is the identity. This
shows that Lgy): F®S — S is alsu surjective. A similar argument shows
that A is again an automorphism of F & S. O

It follows from the above lenuua that sending L to L) induces a
correspoudence

sur(F @ S, 8)¢ /aut(F ® 8)¢ — sur(F ©8,8)9%% /aut(F @ S)¢*¢".

Here the left hand side is identificd with VECq(B. F: S) while the right
hand side is identified with VEC¢: (B~ ", F: S) because O(B)~" = O(B%")
by Lemma 5.1. Through these identifications, the above map is nothing
but the restriction of G-vector bundles over B to B,

One can apply the above argument to F™ for each n in place of F, so
all the statements above hold for F* in place of F.

6. Analysis of (R/I)*/I'™

Since the map p* is bijective by Theorem 3.1, we are led to study its
target group (R/I)*/T>. Henceforth we assume that R/7 is commuta-
tive. Suppose that our C*-action on 3 commnutes with the G-action and
induces a positive grading on O(/3). Then R has a positive grading and
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I becomes a graded ideal in R because it is invariant under the induced
C*-action on R. Therefore R/I inherits the grading from R. Since the
grading on R/I is positive, the degree zero term of a unit in R/I is
again a unit. We denote by (R/I )2‘0) the subgroup of (R/I)* consisting
of elements of degree zero. Then we have a decomposition
(R/I)* = (R/I)g x (1+ (R/I))",
where (R/I); denotes the set of elements in R/I whose degree zero
terms vanish. On the other hand, F‘(’g), which is the projection image of
aut(F>* @ S)(GO), is a subgroup of I'*° and we have a decomposition
I* =T x ree,
where ['J° denotes a subgroup of I'* with 1 as the degree zero term.
The above two decompositions give rise to the following decomposition
(R/I)* /T = (R/I)E‘O)/FE’B’) x (14 (R/I)1)*/T.
We note that (R/I )o) / ['%)y 1s the target of the invariant p> for
VECq(B//C*, F>;S) and that BJC* can be identified with B®" by
Lemma 5.2. Therefore the restriction map
t*: VECg(B, F*;S8) — VECg(B%', F*>; 5),
where ¢: B¢ — B is the inclusion map, corresponds to the projection
(R/T)* /T = (B[ 1)) /T3 X (L4 (R/D1)" /T (R/D)ig) T3,
and thus we have

LEMMA 6.1. If VECg(BC',F;S) consists of one element, then
VECqg(B, F*°; S) is isomorphic to (1 4+ (R/I)1)*/T'2.

An element z € (R/I); is nilpotent if and only if 1+2z € (1+(R/I)1)*,
(see [1], Exercise 2 in p.11). Therefore we have a logathimic map
log: (1+ (R/I)1)* — Nil(R/I);

where Nil(R/I); denotes the set of nilpotent elements in (R/I);.
Nil(R/I); is an O(B)%-submodule of (R/I); and hence of R/I. The
map log is an isomorphism, the inverse being an exponential map.

LEMMA 6.2. logI'® is an O(B)%-submodule of Nil(R/I);.

Proof. The groups (1 + (R/I);1)* and Nil(R/I); have the C*-actions
and the map log are equivariant with respect to the actions. Therefore,
log I'$° is a C*-invariant additive subgroup of Nil(R/I);. It follows that
if z is an element of logI's°, then all its homogeneous terms z(g) lie in
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log I'°. In fact, since z = » 37| z(y), where x4 = 0 for sufficiently large
d, is an element of the C*-invariant additive subgroup logI'{®, > zdx(d)
lies in logI'S® for any z € C*. Suppose that T = 0foral d>m
where m is a certain positive integer. Then we take m nonzero different
integers for 2. For those m values of z, szx(d) lie in logI'®. Using
the non-singularity of Vandermonde matrix and the fact that logI'*® is
an additive group, one sees that z4’s lie in log I'$° for all d.

In the sequel, it suffices to shiow that if z € log ' is homogeneous,
then fz lies again in logT'{® for any f € O(B)®. This can be seen as
follows. Since the exponetional map exp: Nil(R/I); — (1 + (R/I)1)*
is the inverse of log, exp(z) is an element of I'’>*. Remember that an
element in I'Y° is the (S,.S)-component of an element of aut(F> @ S)¢
with 1 as the degree zero term. Suppose that exp(z) is the (5, S5)-
component of such an element A = 5% ) Agy where Agy = 1. Then,
> fdA(d) again lies in aut(F> © S)” for f € O(B)®. In fact, if
A =37 Afyy is the inverse of A, then onc checks that 352 fdA’(d) is
the inverse of > 3°  f dA(d). Taking degrees into account, one sees that
the (S, S)-component of Y 52, f¢ A 1s equal to exp(fz). Therefore fz
lies again in log I'S°, proving the lemnma. U

LEMMA 6.3. The group (1 + (R/I);)* /T is isomorphic to a finitely
generated O(B)®-moduile.

Proof. The group (1+(R/I)1)* /T is isomorphic to Nil(R/I);/log '
through the map log. As is well known, R = Mor(B,Hom(S,S))¢
is finitely generated as O(B)®-module and hence so is the quotient
R/I. Since the ring O(B)% is Noetherian and Nil(R/I); is an O(B)°-
submodule of R/I, Nil(R/I); is finitely generated as O(B)%-module,
(see Propositions 6.2 and 6.5 in [1]) and hence so is the quotient
Nil(R/I)1/log'?®. This proves the lemma. O

Proof of Theorem 1.2. We take the C*-action on B defined by scalar
multiplication. Then BY" is a point, that is the origin, so VECg(B®",
F>; §) consists of one element. Therefore the theorem follows from
Lemmas 6.1 and 6.3. O

7. Product formula

We shall prove Theorem 1.3. We use the notation R, I and I'*° for
the base space B as before and 12, I and '™ for the base space B @ C™.
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LEMMA 7.1. R=R® O(C™) and I = I ® O(C™).
Proof. As is well known,
(7.1) Mor(B, V)¢ is canonically isomorphic to (V ® O(B))°
for any G-module. In fact, an element f € Mor(B, V)¢ induces an equi-
variant algebra homomorphism f*: O(V) — O(B). Since V is a module,
O(V) is a symmetric tensor algebra of V* = Hom(V,C). Therefore, f*
is determined by its restriction to V* and hence f* can be identified
with an element of Hom(V*, O(B))¢ = (V ® O(B))®. This is the corre-
spondence giving the isomorphism (7.1). Applying (7.1} to B@® C™ in
place of B, we get
Mor(B®C™, V)¢ = (V@ O(B@®C™))°
= (V& O(B) @ O(C™))¢
= (V®0(B)%0(C™)
= Mor(B, V)¢ @ O(C™).

Since R = Mor(B®C™, Hom(S, §))¢ and R = Mor(B, Hom(S, §))¢, the
isomorphism (7.2) applied with V' = Hom(S, S) proves the first identity
in the lemma.

As for the latter identity, we remember that 7 is generated by compo-
sition of elements in mor(F,S)¢ and mor(S,F)®. Since mor(F,8)¢ =
Mor(B, Hom(F, $))¢ and mor(S, F)¢ = Mor(B, Hom(S, F))®, the iso-
morphism (7.2) applied with V' = Hom(F,.S) or Hom(S, F') implies the
latter identity in the lemma. O

(7.2)

Now we consider the C*-action on B@&C™ defined by scalar multiplica-
tion on the factor B. This action commutes with the G-action on BeC™,
where the G-action on C™ is trivial, and O(B & C™) = O(B) ® O(C™)
is positively graded by the C*-action, so that we can apply the results in
Section 6. Then, since (B ® C™)C" = {0} @ C™ and VECg(C™, F>°; S)
consists of one element (because any G-vector bundle over C™ is trivial,
which follows from the Quillen-Suslin Theorem, see Corollary in p.113
of [7]), we have

(R/TY /1 = (1+ (R/ D))" /T,
and the logarithmic map

log: (14 (R/I)1)* — Nil(R/I),
is an isomorphism.

LEMMA 7.2. (1) Nil(R/I); = Nil(R/I); ® O(C™).
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(2) logI'™® = log I'® ® O(C™).

Proof. (1) Since R/I is commutative and O(C™) is a polynomial ring
in m variables, it follows from a theorem of E. Snapper (see p.70 in [9])
and Lemma 7.1 that

(7.3) Nil(R/I) = Nil(R/I) ® O(C™).

Here elements in O(C™) have degree zero with respect to our C*-action,
so the identity in the lemma follows by taking elements whose degree
zero terms vanish in (7.3).

(2) Through the projection from B & C™ on B, one can think of I'{°
as a subgroup of I'®, hence logI':® O logI'®®. By Lemma 6.2 (applied
with B @ C™ in place of B), logI'® is a module over O(B ® C™)¢ =
O(B)° ® O(C™). It follows that log ' O log ' ® O(C™).

We shall prove the converse inclusion relation. By definition, an
element in T'® is represented by the (S, S)-component of a G-vector
bundle automorphism A of the trivial bundle (B®C™) x (F&S) over B®
C™ such that A restricted to {0} ®C™ is the identity. Since log[A(S, S)]
is contained in Nil(R/I); = Nil(R/I); ® O(C™), one can express

loglA(S,5)| = > rpy
i=1

with r; € Nil(R/I); and p; € O(C™). We may assume that the poly-
nomials p;’s are linearly independent over C. Then there are points
T1,...,Tq in C™ such that g vectors (p1(z;),...,pe(x;)) forj=1,...,q
are linearly independent. We consider the restriction of A to B x
{z;}, denoted by Aj;, and think of A; as a G-vector bundle automor-
phism of B x (F @ S). We have that log[4;(S,S)] = >{_, pi(z;)r; and
log[A;(S,S)] is an element of log I'S° for each j. It follows that r; is an
element of logI's® for each 4 because the g vectors (pi(z;),...,pq(z;))
for j = 1,...,q are linearly independent and logI'3° is a vector space
over C. Therefore, log[A(S, S)] is an element of log ' ® O(C™). Since
A is arbitrary, this proves the desired converse inclusion relation. O

Proof of Theorem 1.3. The theorem follows from Theorem 3.1 and
Lemma 7.2. I
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