• 제목/요약/키워드: equivalent torque

검색결과 231건 처리시간 0.035초

A Study on the Compensation of the Inductance Parameters of Interior Permanent-Magnet Synchronous Motors Affected by the Magnet Size

  • Jang, Ik-Sang;Lee, Hyung-Woo;Kim, Won-Ho;Cho, Su-Yeon;Kim, Mi-Jung;Lee, Ki-Doek;Lee, Ju
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.74-76
    • /
    • 2011
  • Interior permanent-magnet synchronous motors (IPMSMs) produce both magnetic and reluctance torques. The reluctance torque is due to the difference between the d- and q-axis inductances based on the geometric rotor structure. The steady-state performance analysis and precise control of the IPMSMs greatly depend on the accurate determination of the parameters. The three essential parameters of the IPMSMs are the armature flux linkage of the permanent magnet, the d-axis inductance, and the q-axis inductance. In the basic design step of an IPMSM, the inductance parameters are very important for determining the motor characteristics, such as the input voltage, torque, and efficiency. Thus, it is very important to accurately estimate the values of the motor inductances. The inductance parameters of IPMSMs have nonlinear characteristics along the magnet size because the iron core is saturated by the magnet and armature reaction fluxes. In this study, the inductance parameters were calculated using both the magnetic-equivalent-circuit method and the finite-element method (FEM). Then the calculated parameters were compensated by the saturation coefficient function, which was also calculated via the magnetic-equivalent-circuit method and FEM.

컴퓨터 시뮬레이션을 이용한 자동차용 Torque Strut의 경량 설계 (Light-Weight Design of Automotive Torque Strut Based on Computer Aided Engineering)

  • 김기주
    • 대한기계학회논문집A
    • /
    • 제41권10호
    • /
    • pp.975-981
    • /
    • 2017
  • 알루미늄 합금과 같은 경량소재의 적용을 통한 무게 감소는 연료절감과 대기 오염 감소에 기여할 수 있다. 알루미늄 합금 재료는 피로수명에 대한 강도 측면에서 철강(steel) 소재에 비하여 취약한 단점을 가지고 있다. 부품들의 안전성을 희생시키지 않고 자동차 부품 경량화를 이루기 위해 많은 연구자들이 보다 가볍고 강한 서스펜션 링크들에 관한 연구를 진행해 왔다. 본 연구에서는 기존 STKM11A 철강소재로 설계된 토크 스트럿을 245 MPa의 인장강도 소재인 알루미늄 합금(A356) 소재로 대체하기 위한 경량화 설계 과정에 대하여 von-Mises 응력 변화를 분석하여 연구하였다. 최적화된 설계는 경량화 이전 강재로 설계된 링크보다 42% 이상 경량화 시킬 수 있었으며 이는 토크 스트럿 개발의 안전한 경량화 설계조건 및 경량화 설계에 대한 가이드에 참고가 될 수 있을 것이다.

Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals

  • Ha, Jung-Hong;Park, Sang-Shin
    • Restorative Dentistry and Endodontics
    • /
    • 제37권4호
    • /
    • pp.215-219
    • /
    • 2012
  • Objectives: The purpose of this study was to investigate the screw-in effect and torque generation depending on the size of glide path during root canal preparation. Materials and Methods: Forty Endo-Training Blocks (REF A 0177, Dentsply Maillefer) were used. They were divided into 4 groups. For groups 1, 2, 3, and 4, the glide path was established with ISO #13 Path File (Dentsply Maillefer), #15 NiTi K-file NITIFLEX (Dentsply Maillefer), modified #16 Path File (equivalent to #18), and #20 NiTi K-file NITIFLEX, respectively. The screw-in force and resultant torque were measured using a custom-made experimental apparatus while canals were instrumented with ProTaper S1 (Dentsply Maillefer) at a constant speed of 300 rpm with an automated pecking motion. A statistical analysis was performed using one-way analysis of variance and the Duncan post hoc comparison test. Results: Group 4 showed lowest screw-in effect ($2.796{\pm}0.134$) among the groups (p < 0.05). Torque was inversely proportional to the glide path of each group. In #20 glide path group, the screw-in effect and torque decreased at the last 1 mm from the apical terminus. However, in the other groups, the decrease of the screw-in effect and torque did not occur in the last 1 mm from the apical terminus. Conclusions: The establishment of a larger glide path before NiTi rotary instrumentation appears to be appropriate for safely shaping the canal. It is recommended to establish #20 glide path with NiTi file when using ProTaper NiTi rotary instruments system safely.

Design and Analysis of Rolled Rotor Switched Reluctance Motor

  • Eyhab, El-Kharashi
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권4호
    • /
    • pp.472-481
    • /
    • 2006
  • In the conventional SRM with multi-rotor teeth, the air gap must be very small in order to drive the SRM in the saturation region that is necessary for high output torque. However, this leads to the problem of overheating; particularly in the case of a small-size SRM This paper discusses the design of a new type of SRM, namely the rolled rotor SRM. This new type does not require more than a single region of a very small airgap. This solves the overheating problem in the small size SRM. Moreover, the use of the rolled rotor, instead of the conventional toothed rotor, grades the airgap region in a fashion that gives a smooth variation in the reluctance and smooth shapes of both current and torque. The latter functional behavior is required in many applications such as servo applications. The paper first addresses general design steps of the rolled rotor SRM then proceeds to the simulation results of the new SRM in order to evaluate the advantages gained from the new design. In addition, this paper compares the torque ripples obtained from the new design to its equivalent conventional one.

HILS 시스템을 통한 IPMSM의 철손저항 추정 (Prediction of Iron Loss Resistance by Using HILS System)

  • 정기윤;강래청;이형철
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.25-33
    • /
    • 2015
  • This paper presents the d-q axis equivalent circuit model of an interior permanent magnet (IPM) which includes the iron loss resistance. The model is implemented to be able to run in real-time on the FPGA-based HIL simulator. Power electronic devices are removed from the motor control unit (MCU) and a separated controller is interfaced with the real-time simulated motor drive through a set of proper inputs and outputs. The inputs signals of the HIL simulation are the gate driver signals generated from the controller, and the outputs are the winding currents and resolver signals. This paper especially presents iron loss prediction which is introduced by means of comparing the torque calculated from d-q axis currents and the desired torque; and minimizing the torque difference. This prediction method has stable prediction algorithm to reduce torque difference at specific speed and load. Simulation results demonstrate the feasibility and effectiveness of the proposed methods.

NREL 5MW 풍력터빈 제어용 저주파 통과 필터와 드라이브 트레인 댐퍼의 효과 고찰 (A Study on the Effect of Low Pass Filter and Drive Train Damper for the NREL 5MW Wind Turbine Control)

  • 임채욱
    • 한국산업융합학회 논문집
    • /
    • 제24권4_2호
    • /
    • pp.443-451
    • /
    • 2021
  • It is essential to examine and analyze the power output and load responses together using real-world turbulent wind speeds. In this paper, the power controller and the drive train damper are simultaneously considered using the NREL 5MW wind turbine model, and the damage equivalent load(DEL) of the low speed shaft torque and power output responses according to the natural frequency of the second order low pass filter are simultaneously investigated. Numerical testing is carried out above rated wind speed using commercially available Bladed software. From the viewpoints of DEL reduction of the drive train shaft torque and power output responses, it is shown that the natural frequency of the low pass filter is appropriately about 6 to 10rad/s. And the reduction ratio of the DEL of the low-speed shaft torque decreases as the wind speed becomes higher, and it is confirmed that the reduction ratio is limited to about 20% at high wind speeds.

Analysis Method Using Equivalent Circuit Considering Harmonic Components of the Pole Change Motor

  • Nam Hyuk;Jung Tae-Uk;Kim Young-Kyoun;Jung Seung-Kyu;Hong Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권2호
    • /
    • pp.162-167
    • /
    • 2005
  • This paper deals with the method of characteristic analysis of the capacitor-run single- phase induction motor having two poles (4-pole and 2-pole). This motor, which is referred to as a pole change motor in this paper, is capable of variable speed operation without inverters or drives. However, speed-torque curve can be distorted by the harmonic components contained in the magnetic flux density distribution. Therefore, the characteristics of this motor are analyzed using equivalent circuit considering harmonic components and the simulation results are compared with the experimental results.

상태방정식에 의한 자기여자 유도발전기의 과도전압특성 (Transient Voltage Characteristic of Self-excited Induction Generator by State Equation)

  • 김도진;좌종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.882-884
    • /
    • 2002
  • The transient voltage characteristics of capacitor self-exited induction generator are analyzed by the state equation which is obtained from the d-q axis equivalent circuit of stationary reference frame and torque equation. The d-q equivalent circuit is composed using the condition of stationary reference frame. The mutual inductance is only considered as a function of magnetizing current in the equivalent circuit. The characteristics are analyzed and discussed by the backward Euler method for various load conditions under specified initial conditions and input.

  • PDF

An Equivalent Carrier-based Implementation of a Modified 24-Sector SVPWM Strategy for Asymmetrical Dual Stator Induction Machines

  • Wang, Kun;You, Xiaojie;Wang, Chenchen
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1336-1345
    • /
    • 2016
  • A modified space vector pulse width modulation (SVPWM) strategy based on vector space decomposition and its equivalent carrier-based PWM realization are proposed in this paper, which is suitable for six-phase asymmetrical dual stator induction machines (DSIMs). A DSIM is composed of two sets of symmetrical three-phase stator windings spatially shifted by 30 electrical degrees and a squirrel-cage type rotor. The proposed SVPWM technique can reduce torque ripples and suppress the harmonic currents flowing in the stator windings. Above all, the equivalent relationship between the proposed SVPWM technique and the carrier-based PWM technique has been demonstrated, which allows for easy implementation by a digital signal processor (DSP). Simulation and experimental results, carried out separately on a simulation system and a 3.0 kW DSIM prototype test bench, are presented and discussed.

등가회로도를 이용한 유도전동기의 특성 비교 분석 (Comparison Analysis of Induction Motor using the Equivalent Circuit)

  • 김종겸
    • 전기학회논문지P
    • /
    • 제63권1호
    • /
    • pp.7-11
    • /
    • 2014
  • Induction motor is the most widely used to obtain the driving force in the industrial site. Induction motor is generally applied to the constant speed operation. Induction motor generates a high current at startup. So analysis for both steady state operation and start-up transient is required. In most cases, an equivalent circuit is used for the characteristics analysis of the induction motor. In this study, the two programs are applied to analyze for the rated speed as well as entire speed range. We confirmed that calculation results of the two programs are similar to each other.