• Title/Summary/Keyword: equivalent static loads

Search Result 122, Processing Time 0.026 seconds

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

Case Studies of Nonlinear Response Structural Optimization Using Equivalent Loads (등가하중법을 이용한 비선형 반응 구조최적설계 사례연구)

  • Kim, Yong-Il;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1059-1068
    • /
    • 2007
  • Nonlinear response structural optimization is performed using equivalent loads (NROEL). Nonlinear response optimization is extremely cost because many nonlinear analyses are required. In NROEL, the external loads are transformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response field of linear analysis as that of nonlinear analysis. The primitive from of theory has been published. In this research, the theory is investigated with large scale example problems. Four examples are solved by using NROEL. Conventional optimization with sensitivity analysis using the finite difference method (FDM) is also applied to the same examples. Moreover, response surface optimization method is applied to the last two examples. The results of the optimizations are compared. In nonlinear response optimization of large scale problems, hundreds (or even thousands) of nonlinear analyses are expected to satisfy the convergence criteria. However, in nonlinear response optimization using equivalent loads, only tens of nonlinear analyses are required. The results are discussed and the usefulness of NROEL is presented.

Tall Building Database-assisted Design: a Review of NIST Research

  • Yeo, DongHun;Potra, Florian A.;Simiu, Emil
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2019
  • The purpose of this review paper is to briefly describe main the features of novel procedures developed by the National of Standards and Technology (NIST) for the design of tall buildings. Topics considered in the paper include: the division of tasks between wind and structural engineers; the determination of wind effects with specified mean recurrence intervals by accounting for wind directionality; the risk-consistent design of structures subjected to multiple wind hazards; iterative dynamic analyses and member sizing, including the use of modern optimization approaches; and commonalities of and differences between Database-assisted Design (DAD) and Equivalent Static Wind Loads procedures. An example of the application of the DAD procedure is presented for a reinforced concrete structure. Also included in the paper is an introduction to ongoing research on the estimation of wind load factors or of augmented design mean recurrence intervals commensurate with the uncertainties in the factors that determine the wind effects.

Convergence studies on static and dynamic analysis of beams by using the U-transformation method and finite difference method

  • Yang, Y.;Cai, M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.383-392
    • /
    • 2009
  • The static and dynamic analyses of simply supported beams are studied by using the U-transformation method and the finite difference method. When the beam is divided into the mesh of equal elements, the mesh may be treated as a periodic structure. After an equivalent cyclic periodic system is established, the difference governing equation for such an equivalent system can be uncoupled by applying the U-transformation. Therefore, a set of single-degree-of-freedom equations is formed. These equations can be used to obtain exact analytical solutions of the deflections, bending moments, buckling loads, natural frequencies and dynamic responses of the beam subjected to particular loads or excitations. When the number of elements approaches to infinity, the exact error expression and the exact convergence rates of the difference solutions are obtained. These exact results cannot be easily derived if other methods are used instead.

Nonlinear Response Structural Optimization of a Spacer Grid Spring for a Nuclear Fuel Rod Using the Equivalent Loads (등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계)

  • Kim, Do-Won;Lee, Hyun-Ah;Song, Ki-Nam;Kim, Yong-ll;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1165-1172
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring, nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are transformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response field of linear analysis as that of nonlinear analysis. Shape optimization of the spring is carried out based on EL. The objective function is defined by minimizing the maximum stress in the spring while mass is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear response analysis. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

Structural Optimization of Truss with Non-Linear Response Using Equivalent Linear Loads (선형등가하중을 이용한 비선형 거동을 하는 트러스 구조물의 최적설계)

  • Park, Ki-Jong;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.467-474
    • /
    • 2004
  • A numerical method and algorithms is proposed to perform optimization of non-linear response structures. An analytical and numerical method based finite element method is also proposed for the transformation of non-linear response into linear response. Loads transformed from this method are defined as the equivalent linear loads. With the loads and the transformed response, linear static optimization is performed for nonlinear response structure with geometric and/or material non-linearity. The results of the optimization are compared with them of typical non-linear response optimization using finite difference method. The proposed method is very efficient and derives good solution.

An Overview of Optimization of Structures Subjected to Transient Loads (동하중을 받는 구조물의 최적화에 관한 연구동향)

  • Park Gyung-Jin;Kang Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.369-386
    • /
    • 2005
  • Various aspects of structural optimization techniques under transient loads are extensively reviewed. The main themes of the paper are treatment of time dependent constraints, calculation of design sensitivity, and approximation. Each subject is reviewed with the corresponding papers that have been published since 1970s. The treatment of time dependent constraints in both the direct method and the transformation method is discussed. Two ways of calculating design sensitivity of a structure under transient loads are discussed - direct differentiation method and adjoint variable method. The approximation concept mainly focuses on re- sponse surface method in crashworthiness and local approximation with the intermediate variable Especially, as an approximated optimization technique, Equivalent Static Load method which takes advantage of the well-established static response optimization technique is introduced. And as an application area of dynamic response optimization technique, the structural optimization in flexible multibody dynamic systems is re- viewed in the viewpoint of the above three themes

A Preliminary Study on the Optimal Shape Design of the Axisymmetric Forging Component Using Equivalent Static Loads (등가정하중을 이용한 축대칭 단조품의 형상최적화에 관한 기초연구)

  • Jung, Ui-Jin;Lee, Jae-Jun;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • An optimization method is proposed for preform and billet shape designs in the forging process by using the Equivalent Static Loads (ESLs). The preform shape is an important factor in the forging process because the quality of the final forging is significantly influenced by it. The ESLSO is used to determine the shape of the preform. In the ESLSO, nonlinear dynamic loads are transformed to the ESLs and linear response optimization is performed using the ESLs. The design is updated in linear response optimization and nonlinear analysis is performed with the updated design. The examples in this paper show that optimization using the ESLs is useful and the design results are satisfactory. Consequently, the optimal preform and billet shapes which produce the desired final shape have been obtained. Nonlinear analysis and linear response optimization of the forging process are performed using the commercial software LS-DYNA and NASTRAN, respectively.

Nonlinear Response Structural Optimization of a Nuclear Fuel Rod Spacer Grid Spring Using the Equivalent Load (등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계)

  • Kim, Do-Won;Lee, Hyun-Ah;Song, Ki-Nam;Kim, Yong-Il;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.694-699
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring,nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are teansformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response no EL. The objective function is defined by minimizing the maximum stress in the spring while is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

  • PDF

Preliminary Study on Optimization of the Tube Hydroforming Process Using the Equivalent Static Loads (등가정하중을 이용한 튜브 하이드로포밍 공정 최적설계에 관한 기초연구)

  • Jang, Hwan-Hak;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.259-268
    • /
    • 2015
  • An optimization method for the tube hydroforming process is developed using the equivalent static loads method for non linear static response structural optimization (ESLSO). The aims of the tube hydroforming optimization are to determine the axial forces (axial feedings) and the internal pressures, and to obtain the desired shape without failures after hydroforming analysis. Therefore, the magnitude of the forces should be design variables in the optimization process. Also, some tube hydroforming optimization needs to consider the result of the thickness in nonlinear dynamic analysis as responses. However, the external forces are considered as constants and the thickness is not a response in the linear response optimization process of the original ESLSO. Thus, a new ESLSO process is proposed to overcome the difficulties and some examples are solved to validate the proposed method.