• 제목/요약/키워드: equivalent series resistance

검색결과 92건 처리시간 0.03초

전송 이론을 이용한 공진 MTM-TL 특성 분석 및 응용 (Analysis of Resonant MTM-TL Using Transmission Line Theory and Its Applications)

  • 장성남;이범선
    • 한국전자파학회논문지
    • /
    • 제20권10호
    • /
    • pp.1091-1096
    • /
    • 2009
  • 본 논문에서는 공진 MTM-TL(Metamaterial Transmission Line) 등가 회로를 이용하여 방사 및 회로 파라미터의 추출 식을 제시하였다. 특히 개방 또는 단락 상태에서 방사 소자인 직렬 $R_0$와 병렬 $G_0$를 EM 시뮬레이션 또는 측정을 통해 얻은 S-parameterd(|$S_{11}$|)를 이용하여 추출한다, EM 시뮬레이션의 결과, 추출한 파라미터를 이용한 회로 시뮬레이션의 결과 그리고 측정 결과가 매우 일치함을 확인하였다.

Load-Balance-Independent High Efficiency Single-Inductor Multiple-Output (SIMO) DC-DC Converters

  • Ko, Younghun;Jang, Yeongshin;Han, Sok-Kyun;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권3호
    • /
    • pp.300-312
    • /
    • 2014
  • A single-inductor multiple-output (SIMO) DC-DC converter providing buck and boost outputs with a new switching sequence is presented. In the proposed switching sequence, which does not require any additional blocks, input energy is delivered to outputs continuously by flowing current through the inductor, which leads to high conversion efficiency regardless of the balance between the buck and boost output loads. Furthermore, instead of multiple output loop compensation, only the freewheeling current feedback loop is compensated, which minimizes the number of off-chip components and nullifies the need for the equivalent series resistance (ESR) of the output capacitor for loop compensation. Therefore, power conversion efficiency and output voltage ripples can be improved and minimized, respectively. Implemented in a 0.35-${\mu}m$ CMOS, the proposed SIMO DC-DC converter achieves high conversion efficiency regardless of the load balance between the two outputs with maximum efficiency reaching up to 82% under heavy loads.

"PV Converter 모델링"을 적용한 MPPT제어기법 (Boost Converter Modeling of Photovoltaic Conditioning System for MPPT)

  • 최주엽;최익;송승호;안진웅;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.1-13
    • /
    • 2009
  • Photovoltaic conditioning systems normally use a maximum power point tracking (MPPT) technique to deliver the highest possible power to the load continuously when variations occur in the insolation and temperature. A unique method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter considering input capacitor. This paper aims at modeling boost converter including fairly large equivalent series resistance(ESR) of input reservoir capacitor by state-space-averaging method and PWM switch model and compares both methods using Bode plots. In the future, properly designed controller for compensation will be constructed in 3kw real system for maximum photovoltaic power tracking control.

Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization

  • Nugrahenny, Ayu Tyas Utami;Kim, Jiyoung;Kim, Sang-Kyung;Peck, Dong-Hyun;Yoon, Seong-Ho;Jung, Doo-Hwan
    • Carbon letters
    • /
    • 제15권1호
    • /
    • pp.38-44
    • /
    • 2014
  • This paper reports the effect of adding reduced graphene oxide (RGO) as a conductive material to the composition of an electrode for capacitive deionization (CDI), a process to remove salt from water using ionic adsorption and desorption driven by external applied voltage. RGO can be synthesized in an inexpensive way by the reduction and exfoliation of GO, and removing the oxygen-containing groups and recovering a conjugated structure. GO powder can be obtained from the modification of Hummers method and reduced into RGO using a thermal method. The physical and electrochemical characteristics of RGO material were evaluated and its desalination performance was tested with a CDI unit cell with a potentiostat and conductivity meter, by varying the applied voltage and feed rate of the salt solution. The performance of RGO was compared to graphite as a conductive material in a CDI electrode. The result showed RGO can increase the capacitance, reduce the equivalent series resistance, and improve the electrosorption capacity of CDI electrode.

각형 전기이중층 커패시터의 산업 안전성 (Industry safety characteristic of Prismatic EDLCs)

  • 김경민;장인영;강안수
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2004년도 춘계학술대회
    • /
    • pp.247-257
    • /
    • 2004
  • Electrodes were fabricated based on activated carbon powder BP-20, conducting agent such as Super P, vapor grown carbon fiber (VGCF) and acetylene black (AB), and the mixed binders of flexible poly(vinylidenefluoridehexafluoropropylene) [P(VdF-co-HFP)] and cross linking dispersion agent of polyvinylpyrrolidone (PVP) to increase mechanical strength. According to impedance measurement of the electrode with the addition of conducting agent, we found that it was possible to charge rapidly by the fast steady-state current convergence due to low equivalent series resistance (AC-ESR, fast charge transfer rate at interface between electrode and electrolyte and low RC time constant. The self-discharge of unit cell showed that diffusion process was controlled by the ion concentration difference of initial electrolyte due to the characteristics of Electric Double Layer Capacitor (EDLC) charged by ion adsorption in the beginning, but this by current leakage through the double-layer at the electrode/electrolyte interface had a minor effect and voltages of curves were remained constant regardless of electrode material. We found that the 2.3V/230F grade EDLC would be applied to industrial safety usage such as uninterrupted power supply (UPS) because of the constant DC-ESR by IR drop regardless of discharge current.

  • PDF

DC 전해 커패시터의 고장진단 기준모델 입력을 위한 외부변수의 특성 고찰 (Characteristic Investigation of External Parameters for Fault Diagnosis Reference Model Input of DC Electrolytic Capacitor)

  • 박종찬;손진근
    • 전기학회논문지P
    • /
    • 제61권4호
    • /
    • pp.186-191
    • /
    • 2012
  • DC Bus Electrolytic capacitors have been widely used in power conversion system because they can achieve high capacitance and voltage ratings with volumetric efficiency and low cost. This type of capacitors have been traditionally used for filtering, voltage smoothing, by-pass and other many applications in power conversion circuits requiring a cost effective and volumetric efficiency components. Unfortunately, electrolytic capacitors are some of the weakest components in power electronic converter. Many papers have proposed different methods or algorithms to determinate the ESR and/or capacitance C for fault diagnosis of the electrolytic capacitor. However, both ESR and C vary with frequency and temperature. Accurate knowledge of both values at the capacitors operating conditions is essential to achieve the best reference data of fault judgement. According to parameter analysis, the capacitance increases with temperature and the ESR decreases. Higher frequencies make the ESR and C to decrease. Analysis results show that the proposed electrolytic capacitor parameter estimation technique can be applied to reference signal of capacitor diagnosis systems successfully.

Electrochemical Capacitors Based on Aligned Carbon Nanotubes Directly Synthesized on Tantalum Substrates

  • Kim, Byung-Woo;Chung, Hae-Geun;Min, Byoung-Koun;Kim, Hong-Gon;Kim, Woong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3697-3702
    • /
    • 2010
  • We demonstrate that vertically aligned carbon nanotubes can be synthesized directly on tantalum substrate via water-assisted chemical vapor deposition and evaluate their properties as electrochemical capacitors. The mean diameter of the carbon nanotubes was $7.1{\pm}1.5\;nm$, and 70% of them had double walls. The intensity ratio of G-band to D-band in Raman spectra was as high as 5, indicating good quality of the carbon nanotubes. Owing to the alignment and low equivalent series resistance, the carbon nanotube based supercapacitors showed good rate performance. Rectangular shape of cyclic voltammogram was maintained even at the scan rate of > 1 V/s in 1 M sulfuric acid aqueous solution. Specific capacitance was well-retained (~94%) even when the discharging current density dramatically increased up to 145 A/g. Consequently, specific power as high as 60 kW/kg was obtained from as-grown carbon nanotubes in aqueous solution. Maximum specific energy of ~20 Wh/kg was obtained when carbon nanotubes were electrochemically oxidized and operated in organic solution. Demonstration of direct synthesis of carbon nanotubes on tantalum current collectors and their applications as supercapacitors could be an invaluable basis for fabrication of high performance carbon nanotube supercapacitors.

The Electric Properties of Surface Coating with CePO4 and M3(PO4)2 (M=Mg, Zn) on Li4Ti5O12 for Energy Storage Capacitor

  • Lee, Jong-Kyu;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.413-417
    • /
    • 2018
  • The $Li_4Ti_5O_{12}$ of anode material for the hybrid capacitor was coated using $CePO_4$, $M_3(PO_4)_2$ (M=Mg, Zn). The capacitance of phosphate coated $Li_4Ti_5O_{12}$ was found to be lower than that of $Li_4Ti_5O_{12}$, whereas the equivalent series resistance was higher than that of $Li_4Ti_5O_{12}$. With an increase in cycle number, the base of cylindrical cell exhibited swelling due to gas generated from the reaction between $Li_4Ti_5O_{12}$ and electrolyte. The swelling cycle number of phosphate coated $Li_4Ti_5O_{12}$ was higher than that of $Li_4Ti_5O_{12}$ due to improvement in electrochemical stability. Based on the results, it is proposed that phosphate coating can be employed as a barrier layer to control the gassing reaction by isolating the $Li_4Ti_5O_{12}$ particle from electrolyte solution.

Design and Analysis of Electrical Properties of a Multilayer Ceramic Capacitor Module for DC-Link of Hybrid Electric Vehicles

  • Yoon, Jung-Rag;Moon, Bong Hwa;Lee, Heun Young;Jeong, Dae Yong;Rhie, Dong Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.808-812
    • /
    • 2013
  • Multilayer capacitors with high ripple current and high capacitance were manufactured. The electrical properties of these capacitors were characterized for potential application for DC-link capacitors in hybrid electric vehicle inverters. Internal electrode structures were designed to achieve high capacitance and reliability. A single multilayer capacitor showed $0.46{\mu}F/cm^3$ of capacitance, 0.65% of dielectric loss, and 1450 V to 1650 V of dielectric breakdown voltage depending on the design of the internal electrode. The capacitor module designed with several multilayer capacitors gave a total capacitance of $450{\mu}F$, which is enough for hybrid electric vehicles. In particular, an equivalent series resistance of $4.5m{\Omega}$ or less will result in 60 $A_{rms}$, thereby reaching the allowed ripple current for hybrid electric vehicles.

Solid State Transformer를 위한 양방향 Dual Active Bridge DC-DC 컨버터의 설계 기법 (Practical Design Methodology of Dual Active Bridge Converter as Isolated Bi-directional DC-DC Converter for Solid State Transformer)

  • 최현준;이원빈;정지훈
    • 전력전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.102-108
    • /
    • 2017
  • Proper design guides are proposed for a practical dual-active bridge (DAB) converter based on the mathematical model on the steady state. The DAB converter is popular in bidirectional application due to its zero-voltage capability and easy bidirectional operation for seamless control, high efficiency, and performance. Some design considerations are taken to overcome the limitation of the DAB converter. The practical design methodology of power stage is discussed to minimize the conduction and switching losses of the DAB converter. Small-signal model and frequency response are derived and analyzed based on the generalized average method, which considers equivalent series resistance, to improve the dynamics, stability, and reliability with voltage regulation of the practical DAB converter. The design of closed-loop control is discussed by the derived small-signal model to obtain the pertinent gain and phase margin in steady-state operation. Experimental results of a 3.3 kW prototype of DAB converter demonstrate the validity and effectiveness of the proposed methods.