• Title/Summary/Keyword: equivalent plate element

Search Result 145, Processing Time 0.025 seconds

Modified Equivalent Frame Models for Flat Plate slabs Under Lateral Load (수평하중을 받는 플랫 플레이트 슬래브 해석을 위한 수정된 등가골조모델)

  • Park Young Mi;Cho Kyung Hyun;Han Sang Whan;Lee Li Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.272-275
    • /
    • 2004
  • This study is to propose a modified equivalent frame method under lateral loading. ACI 318-02 allows the equivalent frame method to conduct slab analysis subjected to lateral loads. However, current method can not predict the behavior of the slabs particularly under lateral loading because the equivalent frame method in the ACI 318 has been developed against gravity loads. This study provides more precise model for the analysis of the flat plate slabs under lateral loading. The model reflect the force transfer mechanism of slabs, column and torsional member more accurately than the existing model. The accuracy of this model is verified by compared with finite element method analysis results.

  • PDF

A new finite element procedure for fatigue life prediction of AL6061 plates under multiaxial loadings

  • Tarar, Wasim;Herman Shen, M.H.;George, Tommy;Cross, Charles
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.571-592
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial, bending and shear fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In the first part of this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. In the second part of this study, a new Quadrilateral fatigue finite element is developed through integration of constitutive law into minimum potential energy formulation. This new QUAD-4 element is capable of simulating biaxial fatigue problems. The final output of this finite element analysis both using equivalent stress approach and using the new QUAD-4 fatigue element, is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.

On the eigenvalues of a uniform rectangular plate carrying any number of spring-damper-mass systems

  • Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.341-360
    • /
    • 2003
  • The goal of this paper is to determine the eigenvalues of a uniform rectangular plate carrying any number of spring-damper-mass systems using an analytical-and-numerical-combined method (ANCM). To this end, a technique was presented to replace each "spring-damper-mass" system by a massless equivalent "spring-damper" system with the specified effective spring constant and effective damping coefficient. Then, the mode superposition approach was used to transform the partial differential equation of motion into the matrix equation, and the eigenvalues of the complete system were determined from the associated characteristic equation. To verify the reliability of the presented theory, all numerical results obtained from the ANCM were compared with those obtained from the conventional finite element method (FEM) and good agreement was achieved. Since the order of the property matrices for the equation of motion obtained from the ANCM is much lower than that obtained from the FEM, the CPU time required by the ANCM is much less than that by the FEM.

A Study on the Cutting characteristics of a plastic sheet including Friction (마찰을 고려한 플라스틱 시트의 절단특성에 관한 연구)

  • Han Joohyun;Kim Dohyun;Kim Chungkyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.245-248
    • /
    • 2004
  • The press cutter is productive equipment that practically manufactures materials such as fabrics, papers, films, leathers, rubbers etc. into the desired shapes using cutting method. Plate cutting process is one of the primary energy absorbing mechanisms in a grounding or collision event. The cutting mechanism is complicated and involves plastic flow of plate in the vicinity of the tip, friction between wedge and plate, deformation of plate. In this paper, we studied the effect of friction between cutter and plastic sheet for producing precise and superior products. The press cutter is analyzed numerically using MARC finite element program according to the variation of friction coefficients. The FEM results showed that normal stress, equivalent cauchy stress, normal total strain, equivalent total strain are good when friction coefficient is 0.0 and shear stress, shear total strain are good when friction coefficient is 0.8.

  • PDF

Study on the Mechanical Behavior of Welded part in thick Plate (후판 용접부의 역학적 특성 -유한요소법에 의한 3차원 열탄소성 해석-)

  • 방한서
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.250-258
    • /
    • 1992
  • In order to clarify the mechanical behavior of welding crack and to evaluate the mechanical characteristics of welded parts in thick plate, it is very important to accurately predict the welding deformation and residual stress including transient state before welding. In this paper, the theory of a three-dimensional elasto-plastic problem for the analysis of mechanical phenomenon of welding joint on the plate is developed into an efficient and accurate method based on the finite element method, and then several examples are considered by using the proposed model. The results of numerical analyses are discussed in the viewpoint of the mechanical characteristics of the distribution of three-dimensional welding residual stresses, plastic strains and their production mechanism on the thick plate.

  • PDF

An analysis for the deflection profile of MCFC shield-slot plate by gravity (연료전지용 쉴드슬롯판의 자중처짐해석)

  • Shim U. T.;Lee K. S.;Woo D. W.;Kim J. Y.;Kim J. H.;Lee S. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.472-475
    • /
    • 2005
  • In this study, the equivalent physical properties of the shield-slot plate that has a lot of very tiny bridge shape structures on its plane were determined by tensile tests and structural analyses. With those results in hand, numerical analyses for the deflection profile by gravity effect were carried out to compare with experimental results. The two results were shown coincident very well so that the estimated equivalent physical properties were verified enough for further studies such as curvature reduction for the shield-slot plate.

  • PDF

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

Analysis of the Rectangular Microstrip Antenna with Parasitic Element (Parasitic element를 갖는 구형 마이크로 스트립 안테나에 대한 해석)

  • Hong, Jae-Pyo;Cho, Young-Ki;Son, Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.433-434
    • /
    • 1988
  • Rectangular microstrip antenna with parasitic element is analyzed. Radiation admittance and equivalent circuit parameters between rectangular microstrip antenna and parasitic element are obtained by using equivalent ${\pi}$-network parameters of the slit in the wall of the parallel plate waveguide filled with homogeneous dielectric. The return loss is calculated and measured as a function of frequency with gap width 0.5mm between the patch and parasitic element. The experimental results are in fairly agreement with calculated values.

  • PDF

A Study on the Fatigue Crack Propagation Analysis Using Equivalent Stress Distribution (등가분포응력을 이용한 피로균열전파해석에 관한 연구)

  • C.W. Kim;I.S. Nho;K.S. Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.61-68
    • /
    • 2002
  • From the viewpoint of linear fracture mechanics, the crack propagation behavior of two different structures having the same K-a relationship could be considered identical. In this study the stress distribution in an infinitely wide cracked plate with the same K-a relationship as in a real structure is defined as the equivalent stress distribution. Fatigue life of a real structural element can be predicted by applying the equivalent stress distribution to a simple structural element, and performing a fatigue crack propagation analysis. The K-a relationship for a structural member can be estimated by a finite element method or a simplified prediction method. The validity to obtain effective crack driving stresses by using the equivalent stress-distribution is examined.