• Title/Summary/Keyword: equivalent mechanical model

Search Result 498, Processing Time 0.025 seconds

Optimization of the Television Packing System Using Equivalent Static Loads (등가정하중법을 이용한 텔레비전 포장재의 구조최적설계)

  • Lee, Youngmyung;Jung, Ui-Jin;Park, Gyung-Jin;Han, In-Sik;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • A nonlinear dynamic response structural optimization process is proposed for the television (TV) packing system that protects the damage from a drop situation using the equivalent static loads (ESLs). Topology optimization using ESLs is carried out for conceptual design, and shape optimization using stress ESLs for a virtual model is performed for detailed design. Stress ESLs are static loads that generate the same displacement as well as the stress fields of linear static analysis as those of nonlinear dynamic analysis. Thus, the response of nonlinear dynamic analysis can be utilized as a constraint in the linear static structural optimization. An actual example is solved to validate the process. The drop test of a television packaging system is analyzed by LS-DYNA, and NASTRAN is used for optimization.

Direct Power Control without Current Sensors for Nine-Switch Inverters

  • Pan, Lei;Zhang, Junru;Wang, Kai;Wang, Beibei;Pang, Yi;Zhu, Lin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Recently, the nine-switch inverter has been proposed as a dual output inverter. To date, studies on the control strategies for NSIs have been mostly combined with their application. However, in this paper, a mathematical model and control strategy for nine-switch inverters has been proposed in view of the topology. A switching function model and equivalent circuit model of a nine-switch inverter have been built in ${\alpha}{\beta}$ coordinates. Then, a novel current observer with an improved integrator is proposed based on the switching function model, and a direct power control strategy is proposed. No current sensors are used in the proposed strategy, and only two voltage sensors are employed. The performance of the proposed control method is verified by simulation and experimental results.

ELECTROMECHANICAL ANALYSIS OF PIEZOELECTRIC STACK ACTUATOR (적층 압전 액추에이터의 전기-기계적 특성 분석)

  • Ha, Gi Hong;Lee, Soo Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.374-378
    • /
    • 2014
  • The piezoelectric materials convert from mechanical energy to electrical energy. The piezoelectric materials are used in various engineering applications such as piezoelectric ultrasonic actuators. Since the piezoelectric coupling characteristics of the actuator systems should be considered at the initial design stage, it is essential to analyze the piezoelectric coupling characteristics of the ultrasonic actuators. In this study, we analyzed the electromechanical characteristics of piezoelectric stacked actuator using the equivalent circuit model with modal mass stiffness parameters. It was compared the admittance of piezoelectric stack actuators with the analytical circuit model and the finite element model. Also, the coupling coefficient of piezoelectric stack actuator was discussed according to the number of stacks of actuators.

  • PDF

Development of a Battery Model for Electric Vehicle Virtual Platform (전기 자동차 가상 플랫폼용 배터리 모델 개발 및 검증)

  • Kim, Sunwoo;Jo, Jongmin;Han, Jaeyoung;Kim, Sung-Soo;Cha, Hanju;Yu, Sangseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.486-493
    • /
    • 2015
  • In this paper, a battery model for electric vehicle virtual platform was developed. A battery model consisted of a battery cell model and battery thermal management system. A battery cell model was developed based on Randles equivalent circuit model. Circuit parameters in the form of 3D map data was obtained by charge-discharge experiment of Li-Polymer battery in various temperature condition. The developed battery cell model was experimentally verified by comparing voltages. Thermal management system model was also developed using heat generator, heat transfer and convection model, and cooling fan. For verification of the developed battery model in vehicle level, the integrated battery model was applied in to EV(electric vehicle) virtual platform, and virtual driving simulation using UDDS velocity profile was conducted. The accuracy of the developed battery model has been verified by comparing the simulation results from EV platform with the experimental data.

Durability Evaluation by Strength due to Load Direction of Press in Common Use (상용 프레스의 하중 방향에 따른 강도에 의한 내구성 평가)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.52-59
    • /
    • 2013
  • In this study, strength and durability are investigated using structural and vibration analyses on models 1 and 2 of a press in common use. Model 1 has a structure in which a punch is applied from the upper part to the lower part; however, model 2 a structure in which a punch is applied from the lower part to the upper part. Maximum displacements of models 1 and 2 are 0.018184 mm and 0.025498 mm, respectively. Maximum equivalent stresses of models 1 and 2 are 14.144 MPa and 18.58 MPa respectively. Maximum displacements are shown for the punches of both models; model 1 has less deformation than model 2. Model 1 has more durability than model 2, as determined by an investigation of the structural strength. Using natural frequency analysis, model 1 was found to have maximum deformation in the upper part of punch. Mode1 2 has its maximum deformation in the column part of the body and the upper part of the fixed pin. Using harmonic stress analysis, the maximum deformations were found on the punch part and column part of the body in the cases of models 1 and 2, respectively. As the maximum total deformation and equivalent stress in the case of model 2 are shown to become 40 times those values of model 1, the vibration durability of model 2 can be seen to be weaker than that of model 1.

A Study on Structural Safety and Fatigue Failure of End Mill (엔드밀의 구조적 안전과 피로 파단에 대한 연구)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.3
    • /
    • pp.17-22
    • /
    • 2014
  • The stress between work piece and end mill at the use of end mill at machining and the structural deformation due to the and the pressure are investigated by simulation analysis of three end mill models in this study. These results are achieved with structural and fatigue analyses. Model 1 has the deformation less than model 2 or model 3. As the maximum equivalent stress of model 1 is shown to become the least among all models, model 1 can endure the highest load by comparing with other models. It is useful to estimate the damage prevention and the durability by applying this study result into the design of end mill.

Analysis of Vibration-powered Piezoelectric Energy Harvesters by Using Equivalent Circuit Models (등가 회로 모델을 이용한 압전 진동 에너지 수확 장치의 해석)

  • Kim, Jae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.397-404
    • /
    • 2010
  • The use of equivalent circuit models of piezoelectric energy harvesters is inevitable when power circuitry including rectifying and smoothing circuit elements is connected to them for evaluating DC electrical outputs. This is because it is difficult to incorporate the electro-mechanical coupling resulting from the additional circuitry into the conventional finite element analysis. Motivated by this observation, we propose a method to accurately extract the equivalent circuit parameters by using commercially available FEM software such as ANSYS which provides three-dimensional AC piezoelectric analysis. Then the equivalent circuit can be analyzed by circuit simulators such as $SimPowerSystems^{TM}$ of MATLAB. While the previous works have estimated the circuit parameters by experimental measurements or by analytical solutions developed only for limited geometries and boundary conditions, the proposed method has no such limitation because piezoelectric energy harvesters of any shapes and boundary conditions can be treated in FEM software. For the verification of the proposed method, multi-modal AC electrical power output by using a corresponding equivalent circuit is compared with that by ANSYS. The proposed method is then shown to be very useful in the subsequent evaluation of DC electrical output which is obtained by attaching a bridge diode and a storage capacitor to a piezoelectric energy harvester.

Investigation of aerosol resuspension model based on random contact with rough surface

  • Liwen He;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.989-998
    • /
    • 2023
  • Under nuclear reactor severe accidents, the resuspension of radioactive aerosol may occur in the containment due to the disturbing airflow generated by hydrogen combustion, hydrogen explosion and containment depressurization resulting in the increase of radioactive source term in the containment. In this paper, for containment conditions, by considering the contact between particle and rough deposition surface, the distribution of the distance between two contact points of particle and deposition surface, rolling and lifting separation mechanism, resuspension model based on random contact with rough surface (RRCR) is established. Subsequently, the detailed torque and force analysis is carried out, which indicates that particles are more easily resuspended by rolling under low disturbing airflow velocity. The simulation result is compared with the experimental result and the prediction of different simulation methods, the RRCR model shows equivalent and better predictive ability, which can be applicable for simulation of aerosol resuspension in containment during severe accident.

Structural Strength Analysis of ATV Knuckle (ATV 너클의 구조강도 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.137-144
    • /
    • 2013
  • This study analyzes structural analysis with fatigue and natural frequency on ATV knuckle. The maximum equivalent stresses are happened at the end of knuckle in case of model 1, 2 and 3. As these stresses are below the allowable stress, these models can be stable structurally. The fatigue damage possibility at model 1 becomes more than model 2 and 3. Model 2 or 3 has more durability than model 1 at fatigue. As the resonances are happened at the frequency more than 2000 Hz in case of model 1, 2 and 3, there is no resonance possibilities at real driving. Prevention against damage and durability prediction on automotive chassis parts can be effectively improved by applying this study result on knuckle and improving structural strength.

A Convergent Study on the Structural Analysis of Automotive Support Beam (자동차 서포트빔의 구조해석에 대한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.169-173
    • /
    • 2020
  • The structural analysis was performed at this study when the axle was loaded by using a total of three automotive support beam models, models A, B and C. Comparing with three models A, B, and C, the equivalent stress is considered to be good for its durability because model C is less than the yield stress of the material. The maximum equivalent stresses happening at models A and B are 1.8 times and 2.5 times higher than the yield stress, respectively, indicating that the material is fractured. So, it does not seem to be efficient as a support beam. Model C can be applied efficiently to the improvement design of axle support beams in terms of durability compared to models A and B. The strength of automotive support beam can be evaluated by applying this research result to the automotive part. And it is seen that this study is adequate at the efficient design and aesthetic convergence practically.